Calibrated geometry




In the mathematical field of differential geometry, a calibrated manifold is a Riemannian manifold (M,g) of dimension n equipped with a differential p-form φ (for some 0 ≤ pn) which is a calibration, meaning that:




  • φ is closed: dφ = 0, where d is the exterior derivative

  • for any xM and any oriented p-dimensional subspace ξ of TxM, φ|ξ = λ volξ with λ ≤ 1. Here volξ is the volume form of ξ with respect to g.


Set Gx(φ) = { ξ as above : φ|ξ = volξ }. (In order for the theory to be nontrivial, we need Gx(φ) to be nonempty.) Let G(φ) be the union of Gx(φ) for x in M.


The theory of calibrations is due to R. Harvey and B. Lawson and others. Much earlier (in 1966) Edmond Bonan introduced G2-manifold and Spin(7)-manifold, constructed all the parallel forms and showed that those manifolds were Ricci-flat. Quaternion-Kähler manifold were simultaneously studied in 1967 by Edmond Bonan and Vivian Yoh Kraines and they constructed the parallel 4-form.



Calibrated submanifolds


A p-dimensional submanifold Σ of M is said to be a calibrated submanifold with respect to φ (or simply φ-calibrated) if TΣ lies in G(φ).


A famous one line argument shows that calibrated p-submanifolds minimize volume within their homology class. Indeed, suppose that Σ is calibrated, and Σ ′ is a p submanifold in the same homology class. Then


ΣvolΣ=∫Σφ=∫Σ′φΣ′volΣ′{displaystyle int _{Sigma }mathrm {vol} _{Sigma }=int _{Sigma }varphi =int _{Sigma '}varphi leq int _{Sigma '}mathrm {vol} _{Sigma '}}{displaystyle int _{Sigma }mathrm {vol} _{Sigma }=int _{Sigma }varphi =int _{Sigma '}varphi leq int _{Sigma '}mathrm {vol} _{Sigma '}}

where the first equality holds because Σ is calibrated, the second equality is Stokes' theorem (as φ is closed), and the third inequality holds because φ is a calibration.



Examples



  • On a Kähler manifold, suitably normalized powers of the Kähler form are calibrations, and the calibrated submanifolds are the complex submanifolds. This follows from the Wirtinger inequality.

  • On a Calabi–Yau manifold, the real part of a holomorphic volume form (suitably normalized) is a calibration, and the calibrated submanifolds are special Lagrangian submanifolds.

  • On a G2-manifold, both the 3-form and the Hodge dual 4-form define calibrations. The corresponding calibrated submanifolds are called associative and coassociative submanifolds.

  • On a Spin(7)-manifold, the defining 4-form, known as the Cayley form, is a calibration. The corresponding calibrated submanifolds are called Cayley submanifolds.



References




  • Bonan, Edmond (1965), "Structure presque quaternale sur une variété différentiable", C. R. Acad. Sci. Paris, 261: 5445–5448.mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}.


  • Bonan, Edmond (1966), "Sur les variétés riemanniennes à groupe d'holonomie G2 ou Spin(7)", C. R. Acad. Sci. Paris, 262: 127–129.


  • Berger, M. (1970), "Quelques problemes de geometrie Riemannienne ou Deux variations sur les espaces symetriques compacts de rang un", Enseignement Math., 16: 73–96.


  • Brakke, Kenneth A. (1991), "Minimal cones on hypercubes", J. Geom. Anal.: 329–338 (§6.5).


  • Brakke, Kenneth A. (1993), Polyhedral minimal cones in R4.


  • de Rham, Georges (1957–1958), On the Area of Complex Manifolds. Notes for the Seminar on Several Complex Variables, Institute for Advanced Study, Princeton, New Jersey.


  • Federer, Herbert (1965), "Some theorems on integral currents", Transactions of the American Mathematical Society, Transactions of the American Mathematical Society, Vol. 117, 117: 43–67, doi:10.2307/1994196, JSTOR 1994196.


  • Joyce, Dominic D. (2007), Riemannian Holonomy Groups and Calibrated Geometry, Oxford Graduate Texts in Mathematics, Oxford: Oxford University Press, ISBN 978-0-19-921559-1.


  • Harvey, F. Reese (1990), Spinors and Calibrations, Academic Press, ISBN 978-0-12-329650-4.


  • Kraines, Vivian Yoh (1965), "Topology of quaternionic manifolds", Bull. Amer. Math. Soc., 71,3, 1: 526–527, doi:10.1090/s0002-9904-1965-11316-7.


  • Lawlor, Gary (1998), "Proving area minimization by directed slicing", Indiana U. Math. J., 47 (4): 1547–1592, doi:10.1512/iumj.1998.47.1341.


  • Morgan, Frank, Lawlor, Gary (1996), "Curvy slicing proves that triple junctions locally minimize area", J. Diff. Geom., 44: 514–528.


  • Morgan, Frank, Lawlor, Gary (1994), "Paired calibrations applied to soap films, immiscible fluids, and surfaces or networks minimizing other norms", Pac. J. Math., 166: 55–83.


  • McLean, R. C. (1998), "Deformations of calibrated submanifolds", Communications in Analysis and Geometry, 6: 705–747.


  • Morgan, Frank (1988), "Area-minimizing surfaces, faces of Grassmannians, and calibrations", Amer. Math. Monthly, The American Mathematical Monthly, 95 (9): 813–822, doi:10.2307/2322896, JSTOR 2322896.


  • Morgan, Frank (1990), "Calibrations and new singularities in area-minimizing surfaces: a survey In "Variational Methods" (Proc. Conf. Paris, June 1988), (H. Berestycki J.-M. Coron, and I. Ekeland, Eds.)", Prog. Nonlinear Diff. Eqns. Applns, 4: 329–342.


  • Morgan, Frank (2009), Geometric Measure Theory: a Beginner's Guide (4th ed.), London: Academic Press.


  • Thi, Dao Trong (1977), "Minimal real currents on compact Riemannian manifolds", Izv. Akad. Nauk. SSSR Ser. Mat, 41: 807–820.


  • Van, Le Hong (1990), "Relative calibrations and the problem of stability of minimal surfaces", Lecture Notes in Mathematics, New York: Springer-Verlag, 1453: 245–262.


  • Wirtinger, W. (1936), "Eine Determinantenidentität und ihre Anwendung auf analytische Gebilde und Hermitesche Massbestimmung", Monatsh. Math. Phys., 44: 343–365 (§6.5), doi:10.1007/BF01699328.




這個網誌中的熱門文章

Tangent Lines Diagram Along Smooth Curve

Yusuf al-Mu'taman ibn Hud

Zucchini