Retrieving information from a Mask_RCNN Tensor












0















I've succesfully trained a Mask_RCNN, and for illustration purposes, let's focus on this sample image the network generates:



enter image description here



It's all very good, no problem. What I'd like to achieve however is to have the following variables with their values per instance:



   mask:  (as an image which shows the detected object only, like a binary map)
box: (as a list)
mask_border_positions (x,y) : (as a list)
mask_center_position (x,y) : (as a tuple)


I've also the function which visualizes the above image, from the official site:



def display_instances(image, boxes, masks, class_ids, class_names,
scores=None, title="",
figsize=(16, 16), ax=None,
show_mask=True, show_bbox=True,
colors=None, captions=None):
"""
boxes: [num_instance, (y1, x1, y2, x2, class_id)] in image coordinates.
masks: [height, width, num_instances]
class_ids: [num_instances]
class_names: list of class names of the dataset
scores: (optional) confidence scores for each box
title: (optional) Figure title
show_mask, show_bbox: To show masks and bounding boxes or not
figsize: (optional) the size of the image
colors: (optional) An array or colors to use with each object
captions: (optional) A list of strings to use as captions for each object
"""
# Number of instances
N = boxes.shape[0]
if not N:
print("n*** No instances to display *** n")
else:
assert boxes.shape[0] == masks.shape[-1] == class_ids.shape[0]

# If no axis is passed, create one and automatically call show()
auto_show = False
if not ax:
_, ax = plt.subplots(1, figsize=figsize)
auto_show = True

# Generate random colors
colors = colors or random_colors(N)

# Show area outside image boundaries.
height, width = image.shape[:2]
ax.set_ylim(height + 10, -10)
ax.set_xlim(-10, width + 10)
ax.axis('off')
ax.set_title(title)

masked_image = image.astype(np.uint32).copy()
for i in range(N):
color = colors[i]

# Bounding box
if not np.any(boxes[i]):
# Skip this instance. Has no bbox. Likely lost in image cropping.
continue
y1, x1, y2, x2 = boxes[i]
if show_bbox:
p = patches.Rectangle((x1, y1), x2 - x1, y2 - y1, linewidth=2,
alpha=0.7, linestyle="dashed",
edgecolor=color, facecolor='none')
ax.add_patch(p)

# Label
if not captions:
class_id = class_ids[i]
score = scores[i] if scores is not None else None
label = class_names[class_id]
x = random.randint(x1, (x1 + x2) // 2)
caption = "{} {:.3f}".format(label, score) if score else label
else:
caption = captions[i]
ax.text(x1, y1 + 8, caption,
color='w', size=11, backgroundcolor="none")

# Mask
mask = masks[:, :, i]
if show_mask:
masked_image = apply_mask(masked_image, mask, color)

# Mask Polygon
# Pad to ensure proper polygons for masks that touch image edges.
padded_mask = np.zeros(
(mask.shape[0] + 2, mask.shape[1] + 2), dtype=np.uint8)
padded_mask[1:-1, 1:-1] = mask
contours = find_contours(padded_mask, 0.5)
for verts in contours:
# Subtract the padding and flip (y, x) to (x, y)
verts = np.fliplr(verts) - 1
p = Polygon(verts, facecolor="none", edgecolor=color)
ax.add_patch(p)
ax.imshow(masked_image.astype(np.uint8))
if auto_show:
plt.show()


These code snippets below are then called in the main as follows:



file_names = glob(os.path.join(IMAGE_DIR, "*.jpg"))
masks_prediction = np.zeros((510, 510, len(file_names)))
for i in range(len(file_names)):
print(i)
image = skimage.io.imread(file_names[i])
predictions = model.detect([image], verbose=1)
p = predictions[0]
masks = p['masks']
merged_mask = np.zeros((masks.shape[0], masks.shape[1]))
for j in range(masks.shape[2]):
merged_mask[masks[:,:,j]==True] = True
masks_prediction[:,:,i] = merged_mask
print(masks_prediction.shape)


and:



file_names = glob(os.path.join(IMAGE_DIR, "*.jpg"))
class_names = ['BG', 'car', 'traffic_light', 'person']
test_image = skimage.io.imread(file_names[random.randint(0,len(file_names)-1)])
predictions = model.detect([test_image], verbose=1) # We are replicating the same image to fill up the batch_size
p = predictions[0]
visualize.display_instances(test_image, p['rois'], p['masks'], p['class_ids'],
class_names, p['scores'])


I know it's probably a trivial question and they already exist in the code somewhere, but since I am a starter, I could not get the mask outliers or their centers. If there is a way to have these information per instance, it would be great.



Thanks in advance.










share|improve this question



























    0















    I've succesfully trained a Mask_RCNN, and for illustration purposes, let's focus on this sample image the network generates:



    enter image description here



    It's all very good, no problem. What I'd like to achieve however is to have the following variables with their values per instance:



       mask:  (as an image which shows the detected object only, like a binary map)
    box: (as a list)
    mask_border_positions (x,y) : (as a list)
    mask_center_position (x,y) : (as a tuple)


    I've also the function which visualizes the above image, from the official site:



    def display_instances(image, boxes, masks, class_ids, class_names,
    scores=None, title="",
    figsize=(16, 16), ax=None,
    show_mask=True, show_bbox=True,
    colors=None, captions=None):
    """
    boxes: [num_instance, (y1, x1, y2, x2, class_id)] in image coordinates.
    masks: [height, width, num_instances]
    class_ids: [num_instances]
    class_names: list of class names of the dataset
    scores: (optional) confidence scores for each box
    title: (optional) Figure title
    show_mask, show_bbox: To show masks and bounding boxes or not
    figsize: (optional) the size of the image
    colors: (optional) An array or colors to use with each object
    captions: (optional) A list of strings to use as captions for each object
    """
    # Number of instances
    N = boxes.shape[0]
    if not N:
    print("n*** No instances to display *** n")
    else:
    assert boxes.shape[0] == masks.shape[-1] == class_ids.shape[0]

    # If no axis is passed, create one and automatically call show()
    auto_show = False
    if not ax:
    _, ax = plt.subplots(1, figsize=figsize)
    auto_show = True

    # Generate random colors
    colors = colors or random_colors(N)

    # Show area outside image boundaries.
    height, width = image.shape[:2]
    ax.set_ylim(height + 10, -10)
    ax.set_xlim(-10, width + 10)
    ax.axis('off')
    ax.set_title(title)

    masked_image = image.astype(np.uint32).copy()
    for i in range(N):
    color = colors[i]

    # Bounding box
    if not np.any(boxes[i]):
    # Skip this instance. Has no bbox. Likely lost in image cropping.
    continue
    y1, x1, y2, x2 = boxes[i]
    if show_bbox:
    p = patches.Rectangle((x1, y1), x2 - x1, y2 - y1, linewidth=2,
    alpha=0.7, linestyle="dashed",
    edgecolor=color, facecolor='none')
    ax.add_patch(p)

    # Label
    if not captions:
    class_id = class_ids[i]
    score = scores[i] if scores is not None else None
    label = class_names[class_id]
    x = random.randint(x1, (x1 + x2) // 2)
    caption = "{} {:.3f}".format(label, score) if score else label
    else:
    caption = captions[i]
    ax.text(x1, y1 + 8, caption,
    color='w', size=11, backgroundcolor="none")

    # Mask
    mask = masks[:, :, i]
    if show_mask:
    masked_image = apply_mask(masked_image, mask, color)

    # Mask Polygon
    # Pad to ensure proper polygons for masks that touch image edges.
    padded_mask = np.zeros(
    (mask.shape[0] + 2, mask.shape[1] + 2), dtype=np.uint8)
    padded_mask[1:-1, 1:-1] = mask
    contours = find_contours(padded_mask, 0.5)
    for verts in contours:
    # Subtract the padding and flip (y, x) to (x, y)
    verts = np.fliplr(verts) - 1
    p = Polygon(verts, facecolor="none", edgecolor=color)
    ax.add_patch(p)
    ax.imshow(masked_image.astype(np.uint8))
    if auto_show:
    plt.show()


    These code snippets below are then called in the main as follows:



    file_names = glob(os.path.join(IMAGE_DIR, "*.jpg"))
    masks_prediction = np.zeros((510, 510, len(file_names)))
    for i in range(len(file_names)):
    print(i)
    image = skimage.io.imread(file_names[i])
    predictions = model.detect([image], verbose=1)
    p = predictions[0]
    masks = p['masks']
    merged_mask = np.zeros((masks.shape[0], masks.shape[1]))
    for j in range(masks.shape[2]):
    merged_mask[masks[:,:,j]==True] = True
    masks_prediction[:,:,i] = merged_mask
    print(masks_prediction.shape)


    and:



    file_names = glob(os.path.join(IMAGE_DIR, "*.jpg"))
    class_names = ['BG', 'car', 'traffic_light', 'person']
    test_image = skimage.io.imread(file_names[random.randint(0,len(file_names)-1)])
    predictions = model.detect([test_image], verbose=1) # We are replicating the same image to fill up the batch_size
    p = predictions[0]
    visualize.display_instances(test_image, p['rois'], p['masks'], p['class_ids'],
    class_names, p['scores'])


    I know it's probably a trivial question and they already exist in the code somewhere, but since I am a starter, I could not get the mask outliers or their centers. If there is a way to have these information per instance, it would be great.



    Thanks in advance.










    share|improve this question

























      0












      0








      0








      I've succesfully trained a Mask_RCNN, and for illustration purposes, let's focus on this sample image the network generates:



      enter image description here



      It's all very good, no problem. What I'd like to achieve however is to have the following variables with their values per instance:



         mask:  (as an image which shows the detected object only, like a binary map)
      box: (as a list)
      mask_border_positions (x,y) : (as a list)
      mask_center_position (x,y) : (as a tuple)


      I've also the function which visualizes the above image, from the official site:



      def display_instances(image, boxes, masks, class_ids, class_names,
      scores=None, title="",
      figsize=(16, 16), ax=None,
      show_mask=True, show_bbox=True,
      colors=None, captions=None):
      """
      boxes: [num_instance, (y1, x1, y2, x2, class_id)] in image coordinates.
      masks: [height, width, num_instances]
      class_ids: [num_instances]
      class_names: list of class names of the dataset
      scores: (optional) confidence scores for each box
      title: (optional) Figure title
      show_mask, show_bbox: To show masks and bounding boxes or not
      figsize: (optional) the size of the image
      colors: (optional) An array or colors to use with each object
      captions: (optional) A list of strings to use as captions for each object
      """
      # Number of instances
      N = boxes.shape[0]
      if not N:
      print("n*** No instances to display *** n")
      else:
      assert boxes.shape[0] == masks.shape[-1] == class_ids.shape[0]

      # If no axis is passed, create one and automatically call show()
      auto_show = False
      if not ax:
      _, ax = plt.subplots(1, figsize=figsize)
      auto_show = True

      # Generate random colors
      colors = colors or random_colors(N)

      # Show area outside image boundaries.
      height, width = image.shape[:2]
      ax.set_ylim(height + 10, -10)
      ax.set_xlim(-10, width + 10)
      ax.axis('off')
      ax.set_title(title)

      masked_image = image.astype(np.uint32).copy()
      for i in range(N):
      color = colors[i]

      # Bounding box
      if not np.any(boxes[i]):
      # Skip this instance. Has no bbox. Likely lost in image cropping.
      continue
      y1, x1, y2, x2 = boxes[i]
      if show_bbox:
      p = patches.Rectangle((x1, y1), x2 - x1, y2 - y1, linewidth=2,
      alpha=0.7, linestyle="dashed",
      edgecolor=color, facecolor='none')
      ax.add_patch(p)

      # Label
      if not captions:
      class_id = class_ids[i]
      score = scores[i] if scores is not None else None
      label = class_names[class_id]
      x = random.randint(x1, (x1 + x2) // 2)
      caption = "{} {:.3f}".format(label, score) if score else label
      else:
      caption = captions[i]
      ax.text(x1, y1 + 8, caption,
      color='w', size=11, backgroundcolor="none")

      # Mask
      mask = masks[:, :, i]
      if show_mask:
      masked_image = apply_mask(masked_image, mask, color)

      # Mask Polygon
      # Pad to ensure proper polygons for masks that touch image edges.
      padded_mask = np.zeros(
      (mask.shape[0] + 2, mask.shape[1] + 2), dtype=np.uint8)
      padded_mask[1:-1, 1:-1] = mask
      contours = find_contours(padded_mask, 0.5)
      for verts in contours:
      # Subtract the padding and flip (y, x) to (x, y)
      verts = np.fliplr(verts) - 1
      p = Polygon(verts, facecolor="none", edgecolor=color)
      ax.add_patch(p)
      ax.imshow(masked_image.astype(np.uint8))
      if auto_show:
      plt.show()


      These code snippets below are then called in the main as follows:



      file_names = glob(os.path.join(IMAGE_DIR, "*.jpg"))
      masks_prediction = np.zeros((510, 510, len(file_names)))
      for i in range(len(file_names)):
      print(i)
      image = skimage.io.imread(file_names[i])
      predictions = model.detect([image], verbose=1)
      p = predictions[0]
      masks = p['masks']
      merged_mask = np.zeros((masks.shape[0], masks.shape[1]))
      for j in range(masks.shape[2]):
      merged_mask[masks[:,:,j]==True] = True
      masks_prediction[:,:,i] = merged_mask
      print(masks_prediction.shape)


      and:



      file_names = glob(os.path.join(IMAGE_DIR, "*.jpg"))
      class_names = ['BG', 'car', 'traffic_light', 'person']
      test_image = skimage.io.imread(file_names[random.randint(0,len(file_names)-1)])
      predictions = model.detect([test_image], verbose=1) # We are replicating the same image to fill up the batch_size
      p = predictions[0]
      visualize.display_instances(test_image, p['rois'], p['masks'], p['class_ids'],
      class_names, p['scores'])


      I know it's probably a trivial question and they already exist in the code somewhere, but since I am a starter, I could not get the mask outliers or their centers. If there is a way to have these information per instance, it would be great.



      Thanks in advance.










      share|improve this question














      I've succesfully trained a Mask_RCNN, and for illustration purposes, let's focus on this sample image the network generates:



      enter image description here



      It's all very good, no problem. What I'd like to achieve however is to have the following variables with their values per instance:



         mask:  (as an image which shows the detected object only, like a binary map)
      box: (as a list)
      mask_border_positions (x,y) : (as a list)
      mask_center_position (x,y) : (as a tuple)


      I've also the function which visualizes the above image, from the official site:



      def display_instances(image, boxes, masks, class_ids, class_names,
      scores=None, title="",
      figsize=(16, 16), ax=None,
      show_mask=True, show_bbox=True,
      colors=None, captions=None):
      """
      boxes: [num_instance, (y1, x1, y2, x2, class_id)] in image coordinates.
      masks: [height, width, num_instances]
      class_ids: [num_instances]
      class_names: list of class names of the dataset
      scores: (optional) confidence scores for each box
      title: (optional) Figure title
      show_mask, show_bbox: To show masks and bounding boxes or not
      figsize: (optional) the size of the image
      colors: (optional) An array or colors to use with each object
      captions: (optional) A list of strings to use as captions for each object
      """
      # Number of instances
      N = boxes.shape[0]
      if not N:
      print("n*** No instances to display *** n")
      else:
      assert boxes.shape[0] == masks.shape[-1] == class_ids.shape[0]

      # If no axis is passed, create one and automatically call show()
      auto_show = False
      if not ax:
      _, ax = plt.subplots(1, figsize=figsize)
      auto_show = True

      # Generate random colors
      colors = colors or random_colors(N)

      # Show area outside image boundaries.
      height, width = image.shape[:2]
      ax.set_ylim(height + 10, -10)
      ax.set_xlim(-10, width + 10)
      ax.axis('off')
      ax.set_title(title)

      masked_image = image.astype(np.uint32).copy()
      for i in range(N):
      color = colors[i]

      # Bounding box
      if not np.any(boxes[i]):
      # Skip this instance. Has no bbox. Likely lost in image cropping.
      continue
      y1, x1, y2, x2 = boxes[i]
      if show_bbox:
      p = patches.Rectangle((x1, y1), x2 - x1, y2 - y1, linewidth=2,
      alpha=0.7, linestyle="dashed",
      edgecolor=color, facecolor='none')
      ax.add_patch(p)

      # Label
      if not captions:
      class_id = class_ids[i]
      score = scores[i] if scores is not None else None
      label = class_names[class_id]
      x = random.randint(x1, (x1 + x2) // 2)
      caption = "{} {:.3f}".format(label, score) if score else label
      else:
      caption = captions[i]
      ax.text(x1, y1 + 8, caption,
      color='w', size=11, backgroundcolor="none")

      # Mask
      mask = masks[:, :, i]
      if show_mask:
      masked_image = apply_mask(masked_image, mask, color)

      # Mask Polygon
      # Pad to ensure proper polygons for masks that touch image edges.
      padded_mask = np.zeros(
      (mask.shape[0] + 2, mask.shape[1] + 2), dtype=np.uint8)
      padded_mask[1:-1, 1:-1] = mask
      contours = find_contours(padded_mask, 0.5)
      for verts in contours:
      # Subtract the padding and flip (y, x) to (x, y)
      verts = np.fliplr(verts) - 1
      p = Polygon(verts, facecolor="none", edgecolor=color)
      ax.add_patch(p)
      ax.imshow(masked_image.astype(np.uint8))
      if auto_show:
      plt.show()


      These code snippets below are then called in the main as follows:



      file_names = glob(os.path.join(IMAGE_DIR, "*.jpg"))
      masks_prediction = np.zeros((510, 510, len(file_names)))
      for i in range(len(file_names)):
      print(i)
      image = skimage.io.imread(file_names[i])
      predictions = model.detect([image], verbose=1)
      p = predictions[0]
      masks = p['masks']
      merged_mask = np.zeros((masks.shape[0], masks.shape[1]))
      for j in range(masks.shape[2]):
      merged_mask[masks[:,:,j]==True] = True
      masks_prediction[:,:,i] = merged_mask
      print(masks_prediction.shape)


      and:



      file_names = glob(os.path.join(IMAGE_DIR, "*.jpg"))
      class_names = ['BG', 'car', 'traffic_light', 'person']
      test_image = skimage.io.imread(file_names[random.randint(0,len(file_names)-1)])
      predictions = model.detect([test_image], verbose=1) # We are replicating the same image to fill up the batch_size
      p = predictions[0]
      visualize.display_instances(test_image, p['rois'], p['masks'], p['class_ids'],
      class_names, p['scores'])


      I know it's probably a trivial question and they already exist in the code somewhere, but since I am a starter, I could not get the mask outliers or their centers. If there is a way to have these information per instance, it would be great.



      Thanks in advance.







      python tensorflow






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Nov 21 '18 at 15:25









      SchützeSchütze

      42526




      42526
























          1 Answer
          1






          active

          oldest

          votes


















          0














          The following does it right:



          masks = p['masks']
          class_ids = p['class_ids']
          rois = p['rois']
          scores = p['scores']
          bounding_box = rois[enumerator]


          as for the outline coordinates:



          def getBoundaryPositions(im):

          class_ids = p['class_ids'] # for usage convenience

          im = im.astype(np.uint8)

          # Find contours:

          (im, contours, hierarchy) = cv2.findContours(im, cv2.RETR_EXTERNAL,
          cv2.CHAIN_APPROX_NONE)
          cnts = contours[0]
          outline_posesXY = np.array([np.append(x[0]) for x in cnts])


          # Calculate image moments of the detected contour
          M = cv2.moments(contours[0])

          # collect pose points (for now only position because we don't have pose) of the center
          positionXY =
          positionXY.append(round(M['m10'] / M['m00']))
          positionXY.append(round(M['m01'] / M['m00']))


          return (im, positionXY, outline_posesXY)





          share|improve this answer























            Your Answer






            StackExchange.ifUsing("editor", function () {
            StackExchange.using("externalEditor", function () {
            StackExchange.using("snippets", function () {
            StackExchange.snippets.init();
            });
            });
            }, "code-snippets");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "1"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53415299%2fretrieving-information-from-a-mask-rcnn-tensor%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0














            The following does it right:



            masks = p['masks']
            class_ids = p['class_ids']
            rois = p['rois']
            scores = p['scores']
            bounding_box = rois[enumerator]


            as for the outline coordinates:



            def getBoundaryPositions(im):

            class_ids = p['class_ids'] # for usage convenience

            im = im.astype(np.uint8)

            # Find contours:

            (im, contours, hierarchy) = cv2.findContours(im, cv2.RETR_EXTERNAL,
            cv2.CHAIN_APPROX_NONE)
            cnts = contours[0]
            outline_posesXY = np.array([np.append(x[0]) for x in cnts])


            # Calculate image moments of the detected contour
            M = cv2.moments(contours[0])

            # collect pose points (for now only position because we don't have pose) of the center
            positionXY =
            positionXY.append(round(M['m10'] / M['m00']))
            positionXY.append(round(M['m01'] / M['m00']))


            return (im, positionXY, outline_posesXY)





            share|improve this answer




























              0














              The following does it right:



              masks = p['masks']
              class_ids = p['class_ids']
              rois = p['rois']
              scores = p['scores']
              bounding_box = rois[enumerator]


              as for the outline coordinates:



              def getBoundaryPositions(im):

              class_ids = p['class_ids'] # for usage convenience

              im = im.astype(np.uint8)

              # Find contours:

              (im, contours, hierarchy) = cv2.findContours(im, cv2.RETR_EXTERNAL,
              cv2.CHAIN_APPROX_NONE)
              cnts = contours[0]
              outline_posesXY = np.array([np.append(x[0]) for x in cnts])


              # Calculate image moments of the detected contour
              M = cv2.moments(contours[0])

              # collect pose points (for now only position because we don't have pose) of the center
              positionXY =
              positionXY.append(round(M['m10'] / M['m00']))
              positionXY.append(round(M['m01'] / M['m00']))


              return (im, positionXY, outline_posesXY)





              share|improve this answer


























                0












                0








                0







                The following does it right:



                masks = p['masks']
                class_ids = p['class_ids']
                rois = p['rois']
                scores = p['scores']
                bounding_box = rois[enumerator]


                as for the outline coordinates:



                def getBoundaryPositions(im):

                class_ids = p['class_ids'] # for usage convenience

                im = im.astype(np.uint8)

                # Find contours:

                (im, contours, hierarchy) = cv2.findContours(im, cv2.RETR_EXTERNAL,
                cv2.CHAIN_APPROX_NONE)
                cnts = contours[0]
                outline_posesXY = np.array([np.append(x[0]) for x in cnts])


                # Calculate image moments of the detected contour
                M = cv2.moments(contours[0])

                # collect pose points (for now only position because we don't have pose) of the center
                positionXY =
                positionXY.append(round(M['m10'] / M['m00']))
                positionXY.append(round(M['m01'] / M['m00']))


                return (im, positionXY, outline_posesXY)





                share|improve this answer













                The following does it right:



                masks = p['masks']
                class_ids = p['class_ids']
                rois = p['rois']
                scores = p['scores']
                bounding_box = rois[enumerator]


                as for the outline coordinates:



                def getBoundaryPositions(im):

                class_ids = p['class_ids'] # for usage convenience

                im = im.astype(np.uint8)

                # Find contours:

                (im, contours, hierarchy) = cv2.findContours(im, cv2.RETR_EXTERNAL,
                cv2.CHAIN_APPROX_NONE)
                cnts = contours[0]
                outline_posesXY = np.array([np.append(x[0]) for x in cnts])


                # Calculate image moments of the detected contour
                M = cv2.moments(contours[0])

                # collect pose points (for now only position because we don't have pose) of the center
                positionXY =
                positionXY.append(round(M['m10'] / M['m00']))
                positionXY.append(round(M['m01'] / M['m00']))


                return (im, positionXY, outline_posesXY)






                share|improve this answer












                share|improve this answer



                share|improve this answer










                answered Dec 20 '18 at 10:53









                SchützeSchütze

                42526




                42526
































                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Stack Overflow!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53415299%2fretrieving-information-from-a-mask-rcnn-tensor%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    這個網誌中的熱門文章

                    Xamarin.form Move up view when keyboard appear

                    Post-Redirect-Get with Spring WebFlux and Thymeleaf

                    Anylogic : not able to use stopDelay()