Covariance matrix
Part of a series on Statistics |
Correlation and covariance |
---|
Correlation and covariance of random vectors
|
Correlation and covariance of stochastic processes
|
Correlation and covariance of deterministic signals
|
In probability theory and statistics, a covariance matrix, also known as auto-covariance matrix, dispersion matrix, variance matrix, or variance–covariance matrix, is a matrix whose element in the i, j position is the covariance between the i-th and j-th elements of a random vector. A random vector is a random variable with multiple dimensions. Each element of the vector is a scalar random variable. Each element has either a finite number of observed empirical values or a finite or infinite number of potential values. The potential values are specified by a theoretical joint probability distribution.
Intuitively, the covariance matrix generalizes the notion of variance to multiple dimensions. As an example, the variation in a collection of random points in two-dimensional space cannot be characterized fully by a single number, nor would the variances in the x{displaystyle x} and y{displaystyle y} directions contain all of the necessary information; a 2×2{displaystyle 2times 2} matrix would be necessary to fully characterize the two-dimensional variation.
Because the covariance of the i-th random variable with itself is simply that random variable's variance, each element on the principal diagonal of the covariance matrix is the variance of one of the random variables. Because the covariance of the i-th random variable with the j-th one is the same thing as the covariance of the j-th random variable with the i-th random variable, every covariance matrix is symmetric. Also, every covariance matrix is positive semi-definite.
The auto-covariance matrix of a random vector X{displaystyle mathbf {X} } is typically denoted by KXX{displaystyle operatorname {K} _{mathbf {X} mathbf {X} }} or Σ{displaystyle Sigma }.
Contents
1 Definition
1.1 Generalization of the variance
1.2 Conflicting nomenclatures and notations
2 Properties
2.1 Relation to the correlation matrix
2.2 Relation to the matrix of correlation coefficients
2.3 Inverse of the covariance matrix
2.4 Basic properties
2.5 Block matrices
3 Covariance matrix as a parameter of a distribution
4 Covariance matrix as a linear operator
5 Which matrices are covariance matrices?
6 Complex random vectors
6.1 Covariance matrix
6.2 Pseudo-covariance matrix
6.3 Properties
7 Estimation
8 Applications
9 See also
10 References
11 Further reading
Definition
Throughout this article, boldfaced unsubscripted X{displaystyle mathbf {X} } and Y{displaystyle mathbf {Y} } are used to refer to random vectors, and unboldfaced subscripted Xi{displaystyle X_{i}} and Yi{displaystyle Y_{i}} are used to refer to scalar random variables.
If the entries in the column vector
- X=(X1,X2,...,Xn)T{displaystyle mathbf {X} =(X_{1},X_{2},...,X_{n})^{mathrm {T} }}
are random variables, each with finite variance and expected value, then the covariance matrix KXX{displaystyle operatorname {K} _{mathbf {X} mathbf {X} }} is the matrix whose (i,j){displaystyle (i,j)} entry is the covariance[1]:p. 177
- KXiXj=cov[Xi,Xj]=E[(Xi−E[Xi])(Xj−E[Xj])]{displaystyle operatorname {K} _{X_{i}X_{j}}=operatorname {cov} [X_{i},X_{j}]=operatorname {E} [(X_{i}-operatorname {E} [X_{i}])(X_{j}-operatorname {E} [X_{j}])]}
where the operator E{displaystyle operatorname {E} } denotes the expected value (mean) of its argument.
In other words,
- KXX=[E[(X1−E[X1])(X1−E[X1])]E[(X1−E[X1])(X2−E[X2])]⋯E[(X1−E[X1])(Xn−E[Xn])]E[(X2−E[X2])(X1−E[X1])]E[(X2−E[X2])(X2−E[X2])]⋯E[(X2−E[X2])(Xn−E[Xn])]⋮⋮⋱⋮E[(Xn−E[Xn])(X1−E[X1])]E[(Xn−E[Xn])(X2−E[X2])]⋯E[(Xn−E[Xn])(Xn−E[Xn])]]{displaystyle operatorname {K} _{mathbf {X} mathbf {X} }={begin{bmatrix}mathrm {E} [(X_{1}-operatorname {E} [X_{1}])(X_{1}-operatorname {E} [X_{1}])]&mathrm {E} [(X_{1}-operatorname {E} [X_{1}])(X_{2}-operatorname {E} [X_{2}])]&cdots &mathrm {E} [(X_{1}-operatorname {E} [X_{1}])(X_{n}-operatorname {E} [X_{n}])]\\mathrm {E} [(X_{2}-operatorname {E} [X_{2}])(X_{1}-operatorname {E} [X_{1}])]&mathrm {E} [(X_{2}-operatorname {E} [X_{2}])(X_{2}-operatorname {E} [X_{2}])]&cdots &mathrm {E} [(X_{2}-operatorname {E} [X_{2}])(X_{n}-operatorname {E} [X_{n}])]\\vdots &vdots &ddots &vdots \\mathrm {E} [(X_{n}-operatorname {E} [X_{n}])(X_{1}-operatorname {E} [X_{1}])]&mathrm {E} [(X_{n}-operatorname {E} [X_{n}])(X_{2}-operatorname {E} [X_{2}])]&cdots &mathrm {E} [(X_{n}-operatorname {E} [X_{n}])(X_{n}-operatorname {E} [X_{n}])]end{bmatrix}}}
The definition above is equivalent to the matrix equality
KXX=cov[X,X]=E[(X−μX)(X−μX)T]=E[XXT]−μXμXT{displaystyle operatorname {K} _{mathbf {X} mathbf {X} }=operatorname {cov} [mathbf {X} ,mathbf {X} ]=operatorname {E} [(mathbf {X} -mathbf {mu _{X}} )(mathbf {X} -mathbf {mu _{X}} )^{rm {T}}]=operatorname {E} [mathbf {X} mathbf {X} ^{T}]-mathbf {mu _{X}} mathbf {mu _{X}} ^{T}} |
| (Eq.1) |
where μX=E[X]{displaystyle mathbf {mu _{X}} =operatorname {E} [mathbf {X} ]}.
Generalization of the variance
This form (Eq.1) can be seen as a generalization of the scalar-valued variance to higher dimensions. Recall that for a scalar-valued random variable X{displaystyle X}
- σX2=var(X)=E[(X−E[X])2]=E[(X−E[X])⋅(X−E[X])].{displaystyle sigma _{X}^{2}=operatorname {var} (X)=operatorname {E} [(X-operatorname {E} [X])^{2}]=operatorname {E} [(X-operatorname {E} [X])cdot (X-operatorname {E} [X])].}
Indeed, the entries on the diagonal of the auto-covariance matrix KXX{displaystyle operatorname {K} _{mathbf {X} mathbf {X} }} are the variances of each element of the vector X{displaystyle mathbf {X} }.
Conflicting nomenclatures and notations
Nomenclatures differ. Some statisticians, following the probabilist William Feller in his two-volume book An Introduction to Probability Theory and Its Applications,[2] call the matrix KXX{displaystyle operatorname {K} _{mathbf {X} mathbf {X} }} the variance of the random vector X{displaystyle mathbf {X} }, because it is the natural generalization to higher dimensions of the 1-dimensional variance. Others call it the covariance matrix, because it is the matrix of covariances between the scalar components of the vector X{displaystyle mathbf {X} }.
- var(X)=cov(X)=E[(X−E[X])(X−E[X])T].{displaystyle operatorname {var} (mathbf {X} )=operatorname {cov} (mathbf {X} )=operatorname {E} left[(mathbf {X} -operatorname {E} [mathbf {X} ])(mathbf {X} -operatorname {E} [mathbf {X} ])^{rm {T}}right].}
Both forms are quite standard, and there is no ambiguity between them. The matrix KXX{displaystyle operatorname {K} _{mathbf {X} mathbf {X} }} is also often called the variance-covariance matrix, since the diagonal terms are in fact variances.
By comparison, the notation for the cross-covariance matrix between two vectors is
- cov(X,Y)=KXY=E[(X−E[X])(Y−E[Y])T].{displaystyle operatorname {cov} (mathbf {X} ,mathbf {Y} )=operatorname {K} _{mathbf {X} mathbf {Y} }=operatorname {E} left[(mathbf {X} -operatorname {E} [mathbf {X} ])(mathbf {Y} -operatorname {E} [mathbf {Y} ])^{rm {T}}right].}
Properties
Relation to the correlation matrix
The auto-covariance matrix KXX{displaystyle operatorname {K} _{mathbf {X} mathbf {X} }} is related to the autocorrelation matrix RXX{displaystyle operatorname {R} _{mathbf {X} mathbf {X} }} by
- KXX=E[(X−E[X])(X−E[X])T]=RXX−E[X]E[X]T{displaystyle operatorname {K} _{mathbf {X} mathbf {X} }=operatorname {E} [(mathbf {X} -operatorname {E} [mathbf {X} ])(mathbf {X} -operatorname {E} [mathbf {X} ])^{rm {T}}]=operatorname {R} _{mathbf {X} mathbf {X} }-operatorname {E} [mathbf {X} ]operatorname {E} [mathbf {X} ]^{rm {T}}}
where the autocorrelation matrix is defined as RXX=E[XXT]{displaystyle operatorname {R} _{mathbf {X} mathbf {X} }=operatorname {E} [mathbf {X} mathbf {X} ^{rm {T}}]}.
Relation to the matrix of correlation coefficients
An entity closely related to the covariance matrix is the matrix of Pearson product-moment correlation coefficients between each of the random variables in the random vector X{displaystyle mathbf {X} }, which can be written as
- corr(X)=(diag(KXX))−12KXX(diag(KXX))−12,{displaystyle operatorname {corr} (mathbf {X} )={big (}operatorname {diag} (operatorname {K} _{mathbf {X} mathbf {X} }){big )}^{-{frac {1}{2}}},operatorname {K} _{mathbf {X} mathbf {X} },{big (}operatorname {diag} (operatorname {K} _{mathbf {X} mathbf {X} }){big )}^{-{frac {1}{2}}},}
where diag(KXX){displaystyle operatorname {diag} (operatorname {K} _{mathbf {X} mathbf {X} })} is the matrix of the diagonal elements of KXX{displaystyle operatorname {K} _{mathbf {X} mathbf {X} }} (i.e., a diagonal matrix of the variances of Xi{displaystyle X_{i}} for i=1,…,n{displaystyle i=1,dots ,n}).
Equivalently, the correlation matrix can be seen as the covariance matrix of the standardized random variables Xi/σ(Xi){displaystyle X_{i}/sigma (X_{i})} for i=1,…,n{displaystyle i=1,dots ,n}.
- corr(X)=[1E[(X1−μ1)(X2−μ2)]σ(X1)σ(X2)⋯E[(X1−μ1)(Xn−μn)]σ(X1)σ(Xn)E[(X2−μ2)(X1−μ1)]σ(X2)σ(X1)1⋯E[(X2−μ2)(Xn−μn)]σ(X2)σ(Xn)⋮⋮⋱⋮E[(Xn−μn)(X1−μ1)]σ(Xn)σ(X1)E[(Xn−μn)(X2−μ2)]σ(Xn)σ(X2)⋯1].{displaystyle operatorname {corr} (mathbf {X} )={begin{bmatrix}1&{frac {operatorname {E} [(X_{1}-mu _{1})(X_{2}-mu _{2})]}{sigma (X_{1})sigma (X_{2})}}&cdots &{frac {operatorname {E} [(X_{1}-mu _{1})(X_{n}-mu _{n})]}{sigma (X_{1})sigma (X_{n})}}\\{frac {operatorname {E} [(X_{2}-mu _{2})(X_{1}-mu _{1})]}{sigma (X_{2})sigma (X_{1})}}&1&cdots &{frac {operatorname {E} [(X_{2}-mu _{2})(X_{n}-mu _{n})]}{sigma (X_{2})sigma (X_{n})}}\\vdots &vdots &ddots &vdots \\{frac {operatorname {E} [(X_{n}-mu _{n})(X_{1}-mu _{1})]}{sigma (X_{n})sigma (X_{1})}}&{frac {operatorname {E} [(X_{n}-mu _{n})(X_{2}-mu _{2})]}{sigma (X_{n})sigma (X_{2})}}&cdots &1end{bmatrix}}.}
Each element on the principal diagonal of a correlation matrix is the correlation of a random variable with itself, which always equals 1. Each off-diagonal element is between −1 and +1 inclusive.
Inverse of the covariance matrix
The inverse of this matrix, KXX−1{displaystyle operatorname {K} _{mathbf {X} mathbf {X} }^{-1}}, if it exists, is the inverse covariance matrix, also known as the concentration matrix or precision matrix.[3]
Basic properties
For KXX=var(X)=E[(X−E[X])(X−E[X])T]{displaystyle operatorname {K} _{mathbf {X} mathbf {X} }=operatorname {var} (mathbf {X} )=operatorname {E} left[left(mathbf {X} -operatorname {E} [mathbf {X} ]right)left(mathbf {X} -operatorname {E} [mathbf {X} ]right)^{rm {T}}right]} and μX=E(X){displaystyle mathbf {mu _{X}} =operatorname {E} ({textbf {X}})}, where X=(X1,…,Xn){displaystyle mathbf {X} =(X_{1},ldots ,X_{n})} is a n{displaystyle n}-dimensional random variable, the following basic properties apply:[4]
- KXX=E(XXT)−μXμXT{displaystyle operatorname {K} _{mathbf {X} mathbf {X} }=operatorname {E} (mathbf {XX^{rm {T}}} )-mathbf {mu _{X}} mathbf {mu _{X}} ^{rm {T}}}
KXX{displaystyle operatorname {K} _{mathbf {X} mathbf {X} },} is positive-semidefinite, i.e. aTΣa≥0for all a∈Rn{displaystyle mathbf {a} ^{T}Sigma mathbf {a} geq 0quad {text{for all }}mathbf {a} in mathbb {R} ^{n}}
KXX{displaystyle operatorname {K} _{mathbf {X} mathbf {X} },} is symmetric, i.e. KXXT=KXX{displaystyle operatorname {K} _{mathbf {X} mathbf {X} }^{rm {T}}=operatorname {K} _{mathbf {X} mathbf {X} }}
- For any constant (i.e. non-random) m×n{displaystyle mtimes n} matrix A{displaystyle mathbf {A} } and constant m×1{displaystyle mtimes 1} vector a{displaystyle mathbf {a} }, one has var(AX+a)=Avar(X)AT{displaystyle operatorname {var} (mathbf {AX} +mathbf {a} )=mathbf {A} ,operatorname {var} (mathbf {X} ),mathbf {A} ^{rm {T}}}
- If Y{displaystyle mathbf {Y} } is another random vector with the same dimension as X{displaystyle mathbf {X} }, then var(X+Y)=var(X)+cov(X,Y)+cov(Y,X)+var(Y){displaystyle operatorname {var} (mathbf {X} +mathbf {Y} )=operatorname {var} (mathbf {X} )+operatorname {cov} (mathbf {X} ,mathbf {Y} )+operatorname {cov} (mathbf {Y} ,mathbf {X} )+operatorname {var} (mathbf {Y} )} where cov(X,Y){displaystyle operatorname {cov} (mathbf {X} ,mathbf {Y} )} is the cross-covariance matrix of X{displaystyle mathbf {X} } and Y{displaystyle mathbf {Y} }.
Block matrices
The joint mean μX,Y{displaystyle mathbf {mu } _{X,Y}} and joint covariance matrix ΣX,Y{displaystyle {boldsymbol {Sigma }}_{X,Y}} of X{displaystyle mathbf {X} } and Y{displaystyle mathbf {Y} } can be written in block form
- μX,Y=[μXμY],ΣX,Y=[ΣXXΣXYΣYXΣYY]{displaystyle {boldsymbol {mu }}_{X,Y}={begin{bmatrix}{boldsymbol {mu }}_{X}\{boldsymbol {mu }}_{Y}end{bmatrix}},qquad {boldsymbol {Sigma }}_{X,Y}={begin{bmatrix}{boldsymbol {Sigma }}_{mathit {XX}}&{boldsymbol {Sigma }}_{mathit {XY}}\{boldsymbol {Sigma }}_{mathit {YX}}&{boldsymbol {Sigma }}_{mathit {YY}}end{bmatrix}}}
where ΣXX=var(X),ΣYY=var(Y),{displaystyle {boldsymbol {Sigma }}_{XX}=operatorname {var} ({boldsymbol {X}}),{boldsymbol {Sigma }}_{YY}=operatorname {var} ({boldsymbol {Y}}),} and ΣXY=ΣYXT=cov(X,Y){displaystyle {boldsymbol {Sigma }}_{XY}={boldsymbol {Sigma }}_{mathit {YX}}^{T}=operatorname {cov} ({boldsymbol {X}},{boldsymbol {Y}})}.
ΣXX{displaystyle {boldsymbol {Sigma }}_{XX}} and ΣYY{displaystyle {boldsymbol {Sigma }}_{YY}} can be identified as the variance matrices of the marginal distributions for X{displaystyle {boldsymbol {X}}} and Y{displaystyle {boldsymbol {Y}}} respectively.
If X{displaystyle {boldsymbol {X}}} and Y{displaystyle {boldsymbol {Y}}} are jointly normally distributed,
- X,Y∼ N(μX,Y,ΣX,Y),{displaystyle {boldsymbol {X}},{boldsymbol {Y}}sim {mathcal {N}}({boldsymbol {mu }}_{X,Y},{boldsymbol {Sigma }}_{X,Y}),}
then the conditional distribution for Y{displaystyle {boldsymbol {Y}}} given X{displaystyle {boldsymbol {X}}} is given by
Y∣X∼ N(μY|X,ΣY∣X),{displaystyle {boldsymbol {Y}}mid {boldsymbol {X}}sim {mathcal {N}}({boldsymbol {mu }}_{Y|X},{boldsymbol {Sigma }}_{Ymid X}),}[5]
defined by conditional mean
- μY∣X=μY+ΣYXΣXX−1(x−μX){displaystyle {boldsymbol {mu }}_{Ymid X}={boldsymbol {mu }}_{Y}+{boldsymbol {Sigma }}_{YX}{boldsymbol {Sigma }}_{XX}^{-1}left(mathbf {x} -{boldsymbol {mu }}_{X}right)}
and conditional variance
- ΣY∣X=ΣYY−ΣYXΣXX−1ΣXY.{displaystyle {boldsymbol {Sigma }}_{Ymid X}={boldsymbol {Sigma }}_{YY}-{boldsymbol {Sigma }}_{mathit {YX}}{boldsymbol {Sigma }}_{mathit {XX}}^{-1}{boldsymbol {Sigma }}_{mathit {XY}}.}
The matrix ΣYXΣXX−1{displaystyle {boldsymbol {Sigma }}_{YX}{boldsymbol {Sigma }}_{XX}^{-1}} is known as the matrix of regression coefficients, while in linear algebra ΣY∣X{displaystyle {boldsymbol {Sigma }}_{Ymid X}} is the Schur complement of ΣXX{displaystyle {boldsymbol {Sigma }}_{XX}} in ΣX,Y{displaystyle {boldsymbol {Sigma }}_{X,Y}}.
The matrix of regression coefficients may often be given in transpose form, ΣXX−1ΣXY{displaystyle {boldsymbol {Sigma }}_{XX}^{-1}{boldsymbol {Sigma }}_{XY}}, suitable for post-multiplying a row vector of explanatory variables xT rather than pre-multiplying a column vector x. In this form they correspond to the coefficients obtained by inverting the matrix of the normal equations of ordinary least squares (OLS).
Covariance matrix as a parameter of a distribution
If a vector of n possibly correlated random variables is jointly normally distributed, or more generally elliptically distributed, then its probability density function can be expressed in terms of the covariance matrix.[6]
Covariance matrix as a linear operator
Applied to one vector, the covariance matrix maps a linear combination c of the random variables X onto a vector of covariances with those variables: cTΣ=cov(cTX,X){displaystyle mathbf {c} ^{rm {T}}Sigma =operatorname {cov} (mathbf {c} ^{rm {T}}mathbf {X} ,mathbf {X} )}. Treated as a bilinear form, it yields the covariance between the two linear combinations: dTΣc=cov(dTX,cTX){displaystyle mathbf {d} ^{rm {T}}Sigma mathbf {c} =operatorname {cov} (mathbf {d} ^{rm {T}}mathbf {X} ,mathbf {c} ^{rm {T}}mathbf {X} )}. The variance of a linear combination is then cTΣc{displaystyle mathbf {c} ^{rm {T}}Sigma mathbf {c} }, its covariance with itself.
Similarly, the (pseudo-)inverse covariance matrix provides an inner product ⟨c−μ|Σ+|c−μ⟩{displaystyle langle c-mu |Sigma ^{+}|c-mu rangle }, which induces the Mahalanobis distance, a measure of the "unlikelihood" of c.[citation needed]
Which matrices are covariance matrices?
From the identity just above, let b{displaystyle mathbf {b} } be a (p×1){displaystyle (ptimes 1)} real-valued vector, then
- var(bTX)=bTvar(X)b,{displaystyle operatorname {var} (mathbf {b} ^{rm {T}}mathbf {X} )=mathbf {b} ^{rm {T}}operatorname {var} (mathbf {X} )mathbf {b} ,,}
which must always be nonnegative, since it is the variance of a real-valued random variable. A covariance matrix is always a positive-semidefinite matrix, since
- wTE[(X−E[X])(X−E[X])T]w=E[wT(X−E[X])(X−E[X])Tw]=E[(wT(X−E[X]))2]≥0since wT(X−E[X]) is a scalar.{displaystyle {begin{aligned}&w^{rm {T}}operatorname {E} left[(mathbf {X} -operatorname {E} [mathbf {X} ])(mathbf {X} -operatorname {E} [mathbf {X} ])^{rm {T}}right]w=operatorname {E} left[w^{rm {T}}(mathbf {X} -operatorname {E} [mathbf {X} ])(mathbf {X} -operatorname {E} [mathbf {X} ])^{rm {T}}wright]\[5pt]={}&operatorname {E} {big [}{big (}w^{rm {T}}(mathbf {X} -operatorname {E} [mathbf {X} ]){big )}^{2}{big ]}geq 0quad {text{since }}w^{rm {T}}(mathbf {X} -operatorname {E} [mathbf {X} ]){text{ is a scalar}}.end{aligned}}}
Conversely, every symmetric positive semi-definite matrix is a covariance matrix. To see this, suppose M{displaystyle M} is a p×p{displaystyle ptimes p} positive-semidefinite matrix. From the finite-dimensional case of the spectral theorem, it follows that M{displaystyle M} has a nonnegative symmetric square root, which can be denoted by M1/2. Let X{displaystyle mathbf {X} } be any p×1{displaystyle ptimes 1} column vector-valued random variable whose covariance matrix is the p×p{displaystyle ptimes p} identity matrix. Then
- var(M1/2X)=M1/2var(X)M1/2=M.{displaystyle operatorname {var} (mathbf {M} ^{1/2}mathbf {X} )=mathbf {M} ^{1/2},operatorname {var} (mathbf {X} ),mathbf {M} ^{1/2}=mathbf {M} .}
Complex random vectors
Covariance matrix
The variance of a complex scalar-valued random variable with expected value μ{displaystyle mu } is conventionally defined using complex conjugation:
- var(Z)=E[(Z−μZ)(Z−μZ)¯],{displaystyle operatorname {var} (Z)=operatorname {E} left[(Z-mu _{Z}){overline {(Z-mu _{Z})}}right],}
where the complex conjugate of a complex number z{displaystyle z} is denoted z¯{displaystyle {overline {z}}}; thus the variance of a complex random variable is a real number.
If Z=(Z1,…,Zn)T{displaystyle mathbf {Z} =(Z_{1},ldots ,Z_{n})^{mathrm {T} }} is a column vector of complex-valued random variables, then the conjugate transpose is formed by both transposing and conjugating. In the following expression, the product of a vector with its conjugate transpose results in a square matrix called the covariance matrix, as its expectation:[7]:p. 293
KZZ=cov[Z,Z]=E[(Z−μZ)(Z−μZ)H]{displaystyle operatorname {K} _{mathbf {Z} mathbf {Z} }=operatorname {cov} [mathbf {Z} ,mathbf {Z} ]=operatorname {E} left[(mathbf {Z} -mathbf {mu _{Z}} )(mathbf {Z} -mathbf {mu _{Z}} )^{mathrm {H} }right]},
where H{displaystyle {}^{mathrm {H} }} denotes the conjugate transpose, which is applicable to the scalar case, since the transpose of a scalar is still a scalar. The matrix so obtained will be Hermitian positive-semidefinite,[8] with real numbers in the main diagonal and complex numbers off-diagonal.
Pseudo-covariance matrix
For complex random vectors, another kind of second central moment, the pseudo-covariance matrix (also called relation matrix) is defined as follows. In contrast to the covariance matrix defined above Hermitian transposition gets replaced by transposition in the definition.
- JZZ=cov[Z,Z¯]=E[(Z−μZ)(Z−μZ)T]{displaystyle operatorname {J} _{mathbf {Z} mathbf {Z} }=operatorname {cov} [mathbf {Z} ,{overline {mathbf {Z} }}]=operatorname {E} left[(mathbf {Z} -mathbf {mu _{Z}} )(mathbf {Z} -mathbf {mu _{Z}} )^{mathrm {T} }right]}
Properties
- The covariance matrix is a Hermitian matrix, i.e. KZZH=KZZ{displaystyle operatorname {K} _{mathbf {Z} mathbf {Z} }^{mathrm {H} }=operatorname {K} _{mathbf {Z} mathbf {Z} }}.[1]:p. 179
- The diagonal elements of the covariance matrix are real.[1]:p. 179
Estimation
If MX{displaystyle mathbf {M} _{mathbf {X} }} and MY{displaystyle mathbf {M} _{mathbf {Y} }} are centred data matrices of dimension n×p{displaystyle ntimes p} and n×q{displaystyle ntimes q} respectively, i.e. with n rows of observations of p and q columns of variables, from which the column means have been subtracted, then, if the column means were estimated from the data, sample correlation matrices QX{displaystyle mathbf {Q} _{mathbf {X} }} and QXY{displaystyle mathbf {Q} _{mathbf {XY} }} can be defined to be
- QX=1n−1MXTMX,QXY=1n−1MXTMY{displaystyle mathbf {Q} _{mathbf {X} }={frac {1}{n-1}}mathbf {M} _{mathbf {X} }^{rm {T}}mathbf {M} _{mathbf {X} },qquad mathbf {Q} _{mathbf {XY} }={frac {1}{n-1}}mathbf {M} _{mathbf {X} }^{rm {T}}mathbf {M} _{mathbf {Y} }}
or, if the column means were known a priori,
- QX=1nMXTMX,QXY=1nMXTMY.{displaystyle mathbf {Q} _{mathbf {X} }={frac {1}{n}}mathbf {M} _{mathbf {X} }^{rm {T}}mathbf {M} _{mathbf {X} },qquad mathbf {Q} _{mathbf {XY} }={frac {1}{n}}mathbf {M} _{mathbf {X} }^{rm {T}}mathbf {M} _{mathbf {Y} }.}
These empirical sample correlation matrices are the most straightforward and most often used estimators for the correlation matrices, but other estimators also exist, including regularised or shrinkage estimators, which may have better properties.
Applications
The covariance matrix is a useful tool in many different areas. From it a transformation matrix can be derived, called a whitening transformation, that allows one to completely decorrelate the data[citation needed] or, from a different point of view, to find an optimal basis for representing the data in a compact way[citation needed] (see Rayleigh quotient for a formal proof and additional properties of covariance matrices).
This is called principal component analysis (PCA) and the Karhunen–Loève transform (KL-transform).
The covariance matrix plays a key role in financial economics, especially in portfolio theory and its mutual fund separation theorem and in the capital asset pricing model. The matrix of covariances among various assets' returns is used to determine, under certain assumptions, the relative amounts of different assets that investors should (in a normative analysis) or are predicted to (in a positive analysis) choose to hold in a context of diversification.
See also
- Multivariate statistics
- Gramian matrix
- Eigenvalue decomposition
- Quadratic form (statistics)
- Principal components
References
^ abc Park,Kun Il (2018). Fundamentals of Probability and Stochastic Processes with Applications to Communications. Springer. ISBN 978-3-319-68074-3..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}
^ William Feller (1971). An introduction to probability theory and its applications. Wiley. ISBN 978-0-471-25709-7. Retrieved 10 August 2012.
^ Wasserman, Larry (2004). All of Statistics: A Concise Course in Statistical Inference. ISBN 0-387-40272-1.
^ Taboga, Marco (2010). "Lectures on probability theory and mathematical statistics".
^ Eaton, Morris L. (1983). Multivariate Statistics: a Vector Space Approach. John Wiley and Sons. pp. 116–117. ISBN 0-471-02776-6.
^ Frahm, G.; Junker, M.; Szimayer, A. (2003). "Elliptical copulas: Applicability and limitations". Statistics & Probability Letters. 63 (3): 275–286. doi:10.1016/S0167-7152(03)00092-0.
^ Lapidoth, Amos (2009). A Foundation in Digital Communication. Cambridge University Press. ISBN 978-0-521-19395-5.
^ Brookes, Mike. "The Matrix Reference Manual".
Further reading
Hazewinkel, Michiel, ed. (2001) [1994], "Covariance matrix", Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4
- Weisstein, Eric W. "Covariance Matrix". MathWorld.
van Kampen, N. G. (1981). Stochastic processes in physics and chemistry. New York: North-Holland. ISBN 0-444-86200-5.