Prove that $lim_{ktoinfty}{ sqrt[n]{ prod_{i=1}^{n}{(x_i+k)}} - k } = frac{sum_{i=1}^{n}{x_i}}{n}$











up vote
8
down vote

favorite
1












I accidentally discovered this equality, in which I can prove numerically using python.



$$lim_{ktoinfty}{ sqrt[n]{ prod_{i=1}^{n}{(x_i+k)}} - k } = frac{sum_{i=1}^{n}{x_i}}{n}$$



But I need to prove this equality in an algebraic way and I could not get anywhere. The right-hand side is nothing more than an arithmetic mean, while the left-hand side is a modification of the geometric mean.
I hope someone can help me at this point.










share|cite|improve this question









New contributor




Gustavo Ale is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
























    up vote
    8
    down vote

    favorite
    1












    I accidentally discovered this equality, in which I can prove numerically using python.



    $$lim_{ktoinfty}{ sqrt[n]{ prod_{i=1}^{n}{(x_i+k)}} - k } = frac{sum_{i=1}^{n}{x_i}}{n}$$



    But I need to prove this equality in an algebraic way and I could not get anywhere. The right-hand side is nothing more than an arithmetic mean, while the left-hand side is a modification of the geometric mean.
    I hope someone can help me at this point.










    share|cite|improve this question









    New contributor




    Gustavo Ale is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.






















      up vote
      8
      down vote

      favorite
      1









      up vote
      8
      down vote

      favorite
      1






      1





      I accidentally discovered this equality, in which I can prove numerically using python.



      $$lim_{ktoinfty}{ sqrt[n]{ prod_{i=1}^{n}{(x_i+k)}} - k } = frac{sum_{i=1}^{n}{x_i}}{n}$$



      But I need to prove this equality in an algebraic way and I could not get anywhere. The right-hand side is nothing more than an arithmetic mean, while the left-hand side is a modification of the geometric mean.
      I hope someone can help me at this point.










      share|cite|improve this question









      New contributor




      Gustavo Ale is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      I accidentally discovered this equality, in which I can prove numerically using python.



      $$lim_{ktoinfty}{ sqrt[n]{ prod_{i=1}^{n}{(x_i+k)}} - k } = frac{sum_{i=1}^{n}{x_i}}{n}$$



      But I need to prove this equality in an algebraic way and I could not get anywhere. The right-hand side is nothing more than an arithmetic mean, while the left-hand side is a modification of the geometric mean.
      I hope someone can help me at this point.







      real-analysis limits means






      share|cite|improve this question









      New contributor




      Gustavo Ale is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|cite|improve this question









      New contributor




      Gustavo Ale is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|cite|improve this question




      share|cite|improve this question








      edited Nov 4 at 11:04









      user21820

      37.8k441147




      37.8k441147






      New contributor




      Gustavo Ale is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked Nov 4 at 1:58









      Gustavo Ale

      485




      485




      New contributor




      Gustavo Ale is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      Gustavo Ale is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      Gustavo Ale is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






















          5 Answers
          5






          active

          oldest

          votes

















          up vote
          12
          down vote



          accepted










          Assume that $k$ is greater than twice $|x_1|+ldots+|x_n|$ and also greater than twice $M=x_1^2+ldots+x_n^2$. Over the interval $left(-frac{1}{2},frac{1}{2}right)$ we have
          $$ e^x = 1+x+C(x)x^2, qquad log(1+x)=x+D(x)x^2 $$
          with $|C(x)|,|D(x)|leq 1$. It follows that



          $$begin{eqnarray*}text{GM}(x_1+k,ldots,x_n+k)&=&kcdot text{GM}left(1+tfrac{x_1}{k},ldots,1+tfrac{x_n}{k}right)\&=&kexpleft[frac{1}{n}sum_{j=1}^{n}logleft(1+frac{x_j}{k}right)right]\&=&kexpleft[frac{1}{k}sum_{j=1}^{n}frac{x_j}{n}+Thetaleft(frac{M}{nk^2}right)right]\&=&kleft[1+frac{1}{k}sum_{j=1}^{n}frac{x_j}{n}+Thetaleft(frac{M}{nk^2}right)right]end{eqnarray*}$$
          and the claim is proved. It looks very reasonable also without a formal proof: the magnitude of the difference between the arithmetic mean and the geometric mean is controlled by $frac{text{Var}(x_1,ldots,x_n)}{text{AM}(x_1,ldots,x_n)}$. A translation towards the right leaves the variance unchanged and increases the mean.






          share|cite|improve this answer





















          • While the above is correct (+1 for last paragraph) the result is proved via algebra alone by multiplying with conjugate.
            – Paramanand Singh
            Nov 4 at 8:17










          • Seems excellent to me. Put everything together results in: $$begin{align*} def mysum {sum_{i=1}^{n}{frac{x_i}{n}}} mysum &= lim_{ktoinfty}{ k left[1 + frac{1}{k}mysum + Thetaleft(frac{M}{nk^2}right) right] - k} \ &= lim_{ktoinfty}{ mysum + Thetaleft(frac{M}{nk^2}right)} \ &= lim_{ktoinfty}{ mysum} + lim_{ktoinfty}{Thetaleft(frac{M}{nk^2}right)}, qquad text{where} lim_{ktoinfty}{Thetaleft(frac{M}{nk^2}right)} to 0\ &= mysum\ end{align*}$$ Then the equality is proven. Thanks a lot.
            – Gustavo Ale
            Nov 4 at 11:25


















          up vote
          5
          down vote













          You could even get an interesting asymptotics considering $$y_n=sqrt[n]{ prod_{i=1}^{n}{(x_i+k)}}$$ $$ log(y_n)=frac 1n sum_{i=1}^{n}logleft({(x_i+k)}right)=frac 1n sum_{i=1}^{n}left(log(k)+logleft(1+frac {x_i}kright)right)$$ Assuming that $x_1<x_2<cdots < x_n ll k$, use the Taylor expansion of $logleft(1+frac {x_i}kright)$. Then continuing with Taylor series
          $$y_n=e^{log(y_n)}implies
          y_n=k+frac{sum_{i=1}^{n} x_i}{n}+frac{left(sum_{i=1}^{n} x_iright)^2-nsum_{i=1}^{n} x^2_i}{2n^2 k}+Oleft(frac{1}{k^2}right)$$
          making
          $$ sqrt[n]{ prod_{i=1}^{n}{(x_i+k)}} - k =frac{sum_{i=1}^{n} x_i}{n}+frac{left(sum_{i=1}^{n} x_iright)^2-nsum_{i=1}^{n} x^2_i}{2n^2 k}+Oleft(frac{1}{k^2}right)$$



          For example, using $n=10$, $k=1000$ and $x_i=p_i$, the approximation would give $frac{2572671}{200000}approx 12.8634$ while the exact calculation would lead to $approx 12.8639$






          share|cite|improve this answer



















          • 1




            @GustavoAle. For sure ! I just wanted to see what would be the asymptotics. Cheers.
            – Claude Leibovici
            Nov 4 at 5:20










          • At this point the equality is proven by applying the limit itself,$$lim_{ktoinfty}{sqrt[n]{ prod_{i=1}^{n}{(x_i+k)}} - k} = lim_{ktoinfty}{frac{sum_{i=1}^{n} x_i}{n}+frac{left(sum_{i=1}^{n} x_iright)^2-nsum_{i=1}^{n} x^2_i}{2n^2 k}+Oleft(frac{1}{k^2}right)}$$ where $$lim_{ktoinfty}{frac{left(sum_{i=1}^{n} x_iright)^2-nsum_{i=1}^{n} x^2_i}{2n^2 k}} + Oleft(frac{1}{k^2}right) to 0$$ remaining only $$frac{sum_{i=1}^{n} x_i}{n}$$
            – Gustavo Ale
            Nov 4 at 5:22


















          up vote
          3
          down vote













          Your expression under limit can be written as $k(a-b) $ where $$a=sqrt[n]{prod_{i=1}^{n}left(1+frac{x_i}{k}right)}, b=1$$ and further $a-b=(a^n-b^n) / c$ where $a, b$ tend to $1$ and $$c=a^{n-1}+a^{n-2}b+dots+ab^{n-2}+b^{n-1}$$ tends to $n$ as $ktoinfty$. And $$a^n-b^n=prod_{i=1}^{n}left(1+frac{x_i}{k}right)-1=frac{1}{k}sum_{i=1}^{n}x_i+o(1/k)$$ and thus $$k(a-b) =frac{1}{n}sum_{i=1}^{n}x_i+o(1)$$ and the desired limit as $ktoinfty$ is $dfrac{1}{n}sumlimits_{i=1}^{n}x_i$.






          share|cite|improve this answer























          • Why the downvote?
            – Paramanand Singh
            Nov 4 at 7:43










          • I thought you did not notice that only the geometric series is contained inside the nth-root, because I was unable to proceed the algebra with your suggestion, then I just left your answer unvoted.
            – Gustavo Ale
            Nov 4 at 11:34










          • @GustavoAle: Ok I will add details of $a, b, c$. I was trying to avoid typing large expressions but it appears the readability of post decreased way too much in that process.
            – Paramanand Singh
            Nov 4 at 11:36




















          up vote
          1
          down vote













          You can also give an argument using L'Hopital's rule:
          begin{align*}
          lim_{k to infty} sqrt[n]{prod_{i = 1}^n (x_i + k)} - k &= lim_{k to infty} frac{sqrt[n]{prod_{i = 1}^n left(frac{x_i}{k} + 1right)} - 1}{frac{1}{k}} \
          &overset{(H)}{=} lim_{k to infty} frac{frac{1}{n} cdot frac{sum_{i = 1}^n frac{-x_i}{k^2} cdot prod_{j ne i} left(frac{x_i}{k} + 1right)}{left(prod_{i = 1}^n left(frac{x_i}{k} + 1right)right)^{1 - 1/n}}}{frac{-1}{k^2}} \
          &= lim_{k to infty}frac{1}{n} cdot frac{sum_{i = 1}^n x_i cdot prod_{j ne i} left(frac{x_i}{k} + 1right)}{left(prod_{i = 1}^n left(frac{x_i}{k} + 1right)right)^{1 - 1/n}} \
          &= frac{sum_{i = 1}^n x_i}{n}
          end{align*}






          share|cite|improve this answer




























            up vote
            1
            down vote













            $$
            begin{align}
            lim_{ktoinfty}left[left(prod_{i=1}^n(x_i+k)right)^{1/n}-kright]
            &=lim_{ktoinfty}kleft[prod_{i=1}^nleft(1+frac{x_i}kright)^{1/n}-1right]\
            &=lim_{ktoinfty}frac{prodlimits_{i=1}^nleft(1+frac{x_i}kright)^{1/n}-1}{logleft(prodlimits_{i=1}^nleft(1+frac{x_i}kright)^{1/n}right)}cdotlim_{ktoinfty}frac knsum_{i=1}^nlogleft(1+frac{x_i}kright)\
            &=lim_{xto1}frac{x-1}{log(x)}cdotfrac1nsum_{i=1}^nlim_{ktoinfty}klogleft(1+frac{x_i}kright)\[9pt]
            &=frac1nsum_{i=1}^nx_i
            end{align}
            $$






            share|cite|improve this answer





















              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });






              Gustavo Ale is a new contributor. Be nice, and check out our Code of Conduct.










               

              draft saved


              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2983641%2fprove-that-lim-k-to-infty-sqrtn-prod-i-1nx-ik-k-frac%23new-answer', 'question_page');
              }
              );

              Post as a guest
































              5 Answers
              5






              active

              oldest

              votes








              5 Answers
              5






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes








              up vote
              12
              down vote



              accepted










              Assume that $k$ is greater than twice $|x_1|+ldots+|x_n|$ and also greater than twice $M=x_1^2+ldots+x_n^2$. Over the interval $left(-frac{1}{2},frac{1}{2}right)$ we have
              $$ e^x = 1+x+C(x)x^2, qquad log(1+x)=x+D(x)x^2 $$
              with $|C(x)|,|D(x)|leq 1$. It follows that



              $$begin{eqnarray*}text{GM}(x_1+k,ldots,x_n+k)&=&kcdot text{GM}left(1+tfrac{x_1}{k},ldots,1+tfrac{x_n}{k}right)\&=&kexpleft[frac{1}{n}sum_{j=1}^{n}logleft(1+frac{x_j}{k}right)right]\&=&kexpleft[frac{1}{k}sum_{j=1}^{n}frac{x_j}{n}+Thetaleft(frac{M}{nk^2}right)right]\&=&kleft[1+frac{1}{k}sum_{j=1}^{n}frac{x_j}{n}+Thetaleft(frac{M}{nk^2}right)right]end{eqnarray*}$$
              and the claim is proved. It looks very reasonable also without a formal proof: the magnitude of the difference between the arithmetic mean and the geometric mean is controlled by $frac{text{Var}(x_1,ldots,x_n)}{text{AM}(x_1,ldots,x_n)}$. A translation towards the right leaves the variance unchanged and increases the mean.






              share|cite|improve this answer





















              • While the above is correct (+1 for last paragraph) the result is proved via algebra alone by multiplying with conjugate.
                – Paramanand Singh
                Nov 4 at 8:17










              • Seems excellent to me. Put everything together results in: $$begin{align*} def mysum {sum_{i=1}^{n}{frac{x_i}{n}}} mysum &= lim_{ktoinfty}{ k left[1 + frac{1}{k}mysum + Thetaleft(frac{M}{nk^2}right) right] - k} \ &= lim_{ktoinfty}{ mysum + Thetaleft(frac{M}{nk^2}right)} \ &= lim_{ktoinfty}{ mysum} + lim_{ktoinfty}{Thetaleft(frac{M}{nk^2}right)}, qquad text{where} lim_{ktoinfty}{Thetaleft(frac{M}{nk^2}right)} to 0\ &= mysum\ end{align*}$$ Then the equality is proven. Thanks a lot.
                – Gustavo Ale
                Nov 4 at 11:25















              up vote
              12
              down vote



              accepted










              Assume that $k$ is greater than twice $|x_1|+ldots+|x_n|$ and also greater than twice $M=x_1^2+ldots+x_n^2$. Over the interval $left(-frac{1}{2},frac{1}{2}right)$ we have
              $$ e^x = 1+x+C(x)x^2, qquad log(1+x)=x+D(x)x^2 $$
              with $|C(x)|,|D(x)|leq 1$. It follows that



              $$begin{eqnarray*}text{GM}(x_1+k,ldots,x_n+k)&=&kcdot text{GM}left(1+tfrac{x_1}{k},ldots,1+tfrac{x_n}{k}right)\&=&kexpleft[frac{1}{n}sum_{j=1}^{n}logleft(1+frac{x_j}{k}right)right]\&=&kexpleft[frac{1}{k}sum_{j=1}^{n}frac{x_j}{n}+Thetaleft(frac{M}{nk^2}right)right]\&=&kleft[1+frac{1}{k}sum_{j=1}^{n}frac{x_j}{n}+Thetaleft(frac{M}{nk^2}right)right]end{eqnarray*}$$
              and the claim is proved. It looks very reasonable also without a formal proof: the magnitude of the difference between the arithmetic mean and the geometric mean is controlled by $frac{text{Var}(x_1,ldots,x_n)}{text{AM}(x_1,ldots,x_n)}$. A translation towards the right leaves the variance unchanged and increases the mean.






              share|cite|improve this answer





















              • While the above is correct (+1 for last paragraph) the result is proved via algebra alone by multiplying with conjugate.
                – Paramanand Singh
                Nov 4 at 8:17










              • Seems excellent to me. Put everything together results in: $$begin{align*} def mysum {sum_{i=1}^{n}{frac{x_i}{n}}} mysum &= lim_{ktoinfty}{ k left[1 + frac{1}{k}mysum + Thetaleft(frac{M}{nk^2}right) right] - k} \ &= lim_{ktoinfty}{ mysum + Thetaleft(frac{M}{nk^2}right)} \ &= lim_{ktoinfty}{ mysum} + lim_{ktoinfty}{Thetaleft(frac{M}{nk^2}right)}, qquad text{where} lim_{ktoinfty}{Thetaleft(frac{M}{nk^2}right)} to 0\ &= mysum\ end{align*}$$ Then the equality is proven. Thanks a lot.
                – Gustavo Ale
                Nov 4 at 11:25













              up vote
              12
              down vote



              accepted







              up vote
              12
              down vote



              accepted






              Assume that $k$ is greater than twice $|x_1|+ldots+|x_n|$ and also greater than twice $M=x_1^2+ldots+x_n^2$. Over the interval $left(-frac{1}{2},frac{1}{2}right)$ we have
              $$ e^x = 1+x+C(x)x^2, qquad log(1+x)=x+D(x)x^2 $$
              with $|C(x)|,|D(x)|leq 1$. It follows that



              $$begin{eqnarray*}text{GM}(x_1+k,ldots,x_n+k)&=&kcdot text{GM}left(1+tfrac{x_1}{k},ldots,1+tfrac{x_n}{k}right)\&=&kexpleft[frac{1}{n}sum_{j=1}^{n}logleft(1+frac{x_j}{k}right)right]\&=&kexpleft[frac{1}{k}sum_{j=1}^{n}frac{x_j}{n}+Thetaleft(frac{M}{nk^2}right)right]\&=&kleft[1+frac{1}{k}sum_{j=1}^{n}frac{x_j}{n}+Thetaleft(frac{M}{nk^2}right)right]end{eqnarray*}$$
              and the claim is proved. It looks very reasonable also without a formal proof: the magnitude of the difference between the arithmetic mean and the geometric mean is controlled by $frac{text{Var}(x_1,ldots,x_n)}{text{AM}(x_1,ldots,x_n)}$. A translation towards the right leaves the variance unchanged and increases the mean.






              share|cite|improve this answer












              Assume that $k$ is greater than twice $|x_1|+ldots+|x_n|$ and also greater than twice $M=x_1^2+ldots+x_n^2$. Over the interval $left(-frac{1}{2},frac{1}{2}right)$ we have
              $$ e^x = 1+x+C(x)x^2, qquad log(1+x)=x+D(x)x^2 $$
              with $|C(x)|,|D(x)|leq 1$. It follows that



              $$begin{eqnarray*}text{GM}(x_1+k,ldots,x_n+k)&=&kcdot text{GM}left(1+tfrac{x_1}{k},ldots,1+tfrac{x_n}{k}right)\&=&kexpleft[frac{1}{n}sum_{j=1}^{n}logleft(1+frac{x_j}{k}right)right]\&=&kexpleft[frac{1}{k}sum_{j=1}^{n}frac{x_j}{n}+Thetaleft(frac{M}{nk^2}right)right]\&=&kleft[1+frac{1}{k}sum_{j=1}^{n}frac{x_j}{n}+Thetaleft(frac{M}{nk^2}right)right]end{eqnarray*}$$
              and the claim is proved. It looks very reasonable also without a formal proof: the magnitude of the difference between the arithmetic mean and the geometric mean is controlled by $frac{text{Var}(x_1,ldots,x_n)}{text{AM}(x_1,ldots,x_n)}$. A translation towards the right leaves the variance unchanged and increases the mean.







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered Nov 4 at 3:29









              Jack D'Aurizio

              281k33272652




              281k33272652












              • While the above is correct (+1 for last paragraph) the result is proved via algebra alone by multiplying with conjugate.
                – Paramanand Singh
                Nov 4 at 8:17










              • Seems excellent to me. Put everything together results in: $$begin{align*} def mysum {sum_{i=1}^{n}{frac{x_i}{n}}} mysum &= lim_{ktoinfty}{ k left[1 + frac{1}{k}mysum + Thetaleft(frac{M}{nk^2}right) right] - k} \ &= lim_{ktoinfty}{ mysum + Thetaleft(frac{M}{nk^2}right)} \ &= lim_{ktoinfty}{ mysum} + lim_{ktoinfty}{Thetaleft(frac{M}{nk^2}right)}, qquad text{where} lim_{ktoinfty}{Thetaleft(frac{M}{nk^2}right)} to 0\ &= mysum\ end{align*}$$ Then the equality is proven. Thanks a lot.
                – Gustavo Ale
                Nov 4 at 11:25


















              • While the above is correct (+1 for last paragraph) the result is proved via algebra alone by multiplying with conjugate.
                – Paramanand Singh
                Nov 4 at 8:17










              • Seems excellent to me. Put everything together results in: $$begin{align*} def mysum {sum_{i=1}^{n}{frac{x_i}{n}}} mysum &= lim_{ktoinfty}{ k left[1 + frac{1}{k}mysum + Thetaleft(frac{M}{nk^2}right) right] - k} \ &= lim_{ktoinfty}{ mysum + Thetaleft(frac{M}{nk^2}right)} \ &= lim_{ktoinfty}{ mysum} + lim_{ktoinfty}{Thetaleft(frac{M}{nk^2}right)}, qquad text{where} lim_{ktoinfty}{Thetaleft(frac{M}{nk^2}right)} to 0\ &= mysum\ end{align*}$$ Then the equality is proven. Thanks a lot.
                – Gustavo Ale
                Nov 4 at 11:25
















              While the above is correct (+1 for last paragraph) the result is proved via algebra alone by multiplying with conjugate.
              – Paramanand Singh
              Nov 4 at 8:17




              While the above is correct (+1 for last paragraph) the result is proved via algebra alone by multiplying with conjugate.
              – Paramanand Singh
              Nov 4 at 8:17












              Seems excellent to me. Put everything together results in: $$begin{align*} def mysum {sum_{i=1}^{n}{frac{x_i}{n}}} mysum &= lim_{ktoinfty}{ k left[1 + frac{1}{k}mysum + Thetaleft(frac{M}{nk^2}right) right] - k} \ &= lim_{ktoinfty}{ mysum + Thetaleft(frac{M}{nk^2}right)} \ &= lim_{ktoinfty}{ mysum} + lim_{ktoinfty}{Thetaleft(frac{M}{nk^2}right)}, qquad text{where} lim_{ktoinfty}{Thetaleft(frac{M}{nk^2}right)} to 0\ &= mysum\ end{align*}$$ Then the equality is proven. Thanks a lot.
              – Gustavo Ale
              Nov 4 at 11:25




              Seems excellent to me. Put everything together results in: $$begin{align*} def mysum {sum_{i=1}^{n}{frac{x_i}{n}}} mysum &= lim_{ktoinfty}{ k left[1 + frac{1}{k}mysum + Thetaleft(frac{M}{nk^2}right) right] - k} \ &= lim_{ktoinfty}{ mysum + Thetaleft(frac{M}{nk^2}right)} \ &= lim_{ktoinfty}{ mysum} + lim_{ktoinfty}{Thetaleft(frac{M}{nk^2}right)}, qquad text{where} lim_{ktoinfty}{Thetaleft(frac{M}{nk^2}right)} to 0\ &= mysum\ end{align*}$$ Then the equality is proven. Thanks a lot.
              – Gustavo Ale
              Nov 4 at 11:25










              up vote
              5
              down vote













              You could even get an interesting asymptotics considering $$y_n=sqrt[n]{ prod_{i=1}^{n}{(x_i+k)}}$$ $$ log(y_n)=frac 1n sum_{i=1}^{n}logleft({(x_i+k)}right)=frac 1n sum_{i=1}^{n}left(log(k)+logleft(1+frac {x_i}kright)right)$$ Assuming that $x_1<x_2<cdots < x_n ll k$, use the Taylor expansion of $logleft(1+frac {x_i}kright)$. Then continuing with Taylor series
              $$y_n=e^{log(y_n)}implies
              y_n=k+frac{sum_{i=1}^{n} x_i}{n}+frac{left(sum_{i=1}^{n} x_iright)^2-nsum_{i=1}^{n} x^2_i}{2n^2 k}+Oleft(frac{1}{k^2}right)$$
              making
              $$ sqrt[n]{ prod_{i=1}^{n}{(x_i+k)}} - k =frac{sum_{i=1}^{n} x_i}{n}+frac{left(sum_{i=1}^{n} x_iright)^2-nsum_{i=1}^{n} x^2_i}{2n^2 k}+Oleft(frac{1}{k^2}right)$$



              For example, using $n=10$, $k=1000$ and $x_i=p_i$, the approximation would give $frac{2572671}{200000}approx 12.8634$ while the exact calculation would lead to $approx 12.8639$






              share|cite|improve this answer



















              • 1




                @GustavoAle. For sure ! I just wanted to see what would be the asymptotics. Cheers.
                – Claude Leibovici
                Nov 4 at 5:20










              • At this point the equality is proven by applying the limit itself,$$lim_{ktoinfty}{sqrt[n]{ prod_{i=1}^{n}{(x_i+k)}} - k} = lim_{ktoinfty}{frac{sum_{i=1}^{n} x_i}{n}+frac{left(sum_{i=1}^{n} x_iright)^2-nsum_{i=1}^{n} x^2_i}{2n^2 k}+Oleft(frac{1}{k^2}right)}$$ where $$lim_{ktoinfty}{frac{left(sum_{i=1}^{n} x_iright)^2-nsum_{i=1}^{n} x^2_i}{2n^2 k}} + Oleft(frac{1}{k^2}right) to 0$$ remaining only $$frac{sum_{i=1}^{n} x_i}{n}$$
                – Gustavo Ale
                Nov 4 at 5:22















              up vote
              5
              down vote













              You could even get an interesting asymptotics considering $$y_n=sqrt[n]{ prod_{i=1}^{n}{(x_i+k)}}$$ $$ log(y_n)=frac 1n sum_{i=1}^{n}logleft({(x_i+k)}right)=frac 1n sum_{i=1}^{n}left(log(k)+logleft(1+frac {x_i}kright)right)$$ Assuming that $x_1<x_2<cdots < x_n ll k$, use the Taylor expansion of $logleft(1+frac {x_i}kright)$. Then continuing with Taylor series
              $$y_n=e^{log(y_n)}implies
              y_n=k+frac{sum_{i=1}^{n} x_i}{n}+frac{left(sum_{i=1}^{n} x_iright)^2-nsum_{i=1}^{n} x^2_i}{2n^2 k}+Oleft(frac{1}{k^2}right)$$
              making
              $$ sqrt[n]{ prod_{i=1}^{n}{(x_i+k)}} - k =frac{sum_{i=1}^{n} x_i}{n}+frac{left(sum_{i=1}^{n} x_iright)^2-nsum_{i=1}^{n} x^2_i}{2n^2 k}+Oleft(frac{1}{k^2}right)$$



              For example, using $n=10$, $k=1000$ and $x_i=p_i$, the approximation would give $frac{2572671}{200000}approx 12.8634$ while the exact calculation would lead to $approx 12.8639$






              share|cite|improve this answer



















              • 1




                @GustavoAle. For sure ! I just wanted to see what would be the asymptotics. Cheers.
                – Claude Leibovici
                Nov 4 at 5:20










              • At this point the equality is proven by applying the limit itself,$$lim_{ktoinfty}{sqrt[n]{ prod_{i=1}^{n}{(x_i+k)}} - k} = lim_{ktoinfty}{frac{sum_{i=1}^{n} x_i}{n}+frac{left(sum_{i=1}^{n} x_iright)^2-nsum_{i=1}^{n} x^2_i}{2n^2 k}+Oleft(frac{1}{k^2}right)}$$ where $$lim_{ktoinfty}{frac{left(sum_{i=1}^{n} x_iright)^2-nsum_{i=1}^{n} x^2_i}{2n^2 k}} + Oleft(frac{1}{k^2}right) to 0$$ remaining only $$frac{sum_{i=1}^{n} x_i}{n}$$
                – Gustavo Ale
                Nov 4 at 5:22













              up vote
              5
              down vote










              up vote
              5
              down vote









              You could even get an interesting asymptotics considering $$y_n=sqrt[n]{ prod_{i=1}^{n}{(x_i+k)}}$$ $$ log(y_n)=frac 1n sum_{i=1}^{n}logleft({(x_i+k)}right)=frac 1n sum_{i=1}^{n}left(log(k)+logleft(1+frac {x_i}kright)right)$$ Assuming that $x_1<x_2<cdots < x_n ll k$, use the Taylor expansion of $logleft(1+frac {x_i}kright)$. Then continuing with Taylor series
              $$y_n=e^{log(y_n)}implies
              y_n=k+frac{sum_{i=1}^{n} x_i}{n}+frac{left(sum_{i=1}^{n} x_iright)^2-nsum_{i=1}^{n} x^2_i}{2n^2 k}+Oleft(frac{1}{k^2}right)$$
              making
              $$ sqrt[n]{ prod_{i=1}^{n}{(x_i+k)}} - k =frac{sum_{i=1}^{n} x_i}{n}+frac{left(sum_{i=1}^{n} x_iright)^2-nsum_{i=1}^{n} x^2_i}{2n^2 k}+Oleft(frac{1}{k^2}right)$$



              For example, using $n=10$, $k=1000$ and $x_i=p_i$, the approximation would give $frac{2572671}{200000}approx 12.8634$ while the exact calculation would lead to $approx 12.8639$






              share|cite|improve this answer














              You could even get an interesting asymptotics considering $$y_n=sqrt[n]{ prod_{i=1}^{n}{(x_i+k)}}$$ $$ log(y_n)=frac 1n sum_{i=1}^{n}logleft({(x_i+k)}right)=frac 1n sum_{i=1}^{n}left(log(k)+logleft(1+frac {x_i}kright)right)$$ Assuming that $x_1<x_2<cdots < x_n ll k$, use the Taylor expansion of $logleft(1+frac {x_i}kright)$. Then continuing with Taylor series
              $$y_n=e^{log(y_n)}implies
              y_n=k+frac{sum_{i=1}^{n} x_i}{n}+frac{left(sum_{i=1}^{n} x_iright)^2-nsum_{i=1}^{n} x^2_i}{2n^2 k}+Oleft(frac{1}{k^2}right)$$
              making
              $$ sqrt[n]{ prod_{i=1}^{n}{(x_i+k)}} - k =frac{sum_{i=1}^{n} x_i}{n}+frac{left(sum_{i=1}^{n} x_iright)^2-nsum_{i=1}^{n} x^2_i}{2n^2 k}+Oleft(frac{1}{k^2}right)$$



              For example, using $n=10$, $k=1000$ and $x_i=p_i$, the approximation would give $frac{2572671}{200000}approx 12.8634$ while the exact calculation would lead to $approx 12.8639$







              share|cite|improve this answer














              share|cite|improve this answer



              share|cite|improve this answer








              edited Nov 4 at 5:04

























              answered Nov 4 at 4:53









              Claude Leibovici

              115k1155130




              115k1155130








              • 1




                @GustavoAle. For sure ! I just wanted to see what would be the asymptotics. Cheers.
                – Claude Leibovici
                Nov 4 at 5:20










              • At this point the equality is proven by applying the limit itself,$$lim_{ktoinfty}{sqrt[n]{ prod_{i=1}^{n}{(x_i+k)}} - k} = lim_{ktoinfty}{frac{sum_{i=1}^{n} x_i}{n}+frac{left(sum_{i=1}^{n} x_iright)^2-nsum_{i=1}^{n} x^2_i}{2n^2 k}+Oleft(frac{1}{k^2}right)}$$ where $$lim_{ktoinfty}{frac{left(sum_{i=1}^{n} x_iright)^2-nsum_{i=1}^{n} x^2_i}{2n^2 k}} + Oleft(frac{1}{k^2}right) to 0$$ remaining only $$frac{sum_{i=1}^{n} x_i}{n}$$
                – Gustavo Ale
                Nov 4 at 5:22














              • 1




                @GustavoAle. For sure ! I just wanted to see what would be the asymptotics. Cheers.
                – Claude Leibovici
                Nov 4 at 5:20










              • At this point the equality is proven by applying the limit itself,$$lim_{ktoinfty}{sqrt[n]{ prod_{i=1}^{n}{(x_i+k)}} - k} = lim_{ktoinfty}{frac{sum_{i=1}^{n} x_i}{n}+frac{left(sum_{i=1}^{n} x_iright)^2-nsum_{i=1}^{n} x^2_i}{2n^2 k}+Oleft(frac{1}{k^2}right)}$$ where $$lim_{ktoinfty}{frac{left(sum_{i=1}^{n} x_iright)^2-nsum_{i=1}^{n} x^2_i}{2n^2 k}} + Oleft(frac{1}{k^2}right) to 0$$ remaining only $$frac{sum_{i=1}^{n} x_i}{n}$$
                – Gustavo Ale
                Nov 4 at 5:22








              1




              1




              @GustavoAle. For sure ! I just wanted to see what would be the asymptotics. Cheers.
              – Claude Leibovici
              Nov 4 at 5:20




              @GustavoAle. For sure ! I just wanted to see what would be the asymptotics. Cheers.
              – Claude Leibovici
              Nov 4 at 5:20












              At this point the equality is proven by applying the limit itself,$$lim_{ktoinfty}{sqrt[n]{ prod_{i=1}^{n}{(x_i+k)}} - k} = lim_{ktoinfty}{frac{sum_{i=1}^{n} x_i}{n}+frac{left(sum_{i=1}^{n} x_iright)^2-nsum_{i=1}^{n} x^2_i}{2n^2 k}+Oleft(frac{1}{k^2}right)}$$ where $$lim_{ktoinfty}{frac{left(sum_{i=1}^{n} x_iright)^2-nsum_{i=1}^{n} x^2_i}{2n^2 k}} + Oleft(frac{1}{k^2}right) to 0$$ remaining only $$frac{sum_{i=1}^{n} x_i}{n}$$
              – Gustavo Ale
              Nov 4 at 5:22




              At this point the equality is proven by applying the limit itself,$$lim_{ktoinfty}{sqrt[n]{ prod_{i=1}^{n}{(x_i+k)}} - k} = lim_{ktoinfty}{frac{sum_{i=1}^{n} x_i}{n}+frac{left(sum_{i=1}^{n} x_iright)^2-nsum_{i=1}^{n} x^2_i}{2n^2 k}+Oleft(frac{1}{k^2}right)}$$ where $$lim_{ktoinfty}{frac{left(sum_{i=1}^{n} x_iright)^2-nsum_{i=1}^{n} x^2_i}{2n^2 k}} + Oleft(frac{1}{k^2}right) to 0$$ remaining only $$frac{sum_{i=1}^{n} x_i}{n}$$
              – Gustavo Ale
              Nov 4 at 5:22










              up vote
              3
              down vote













              Your expression under limit can be written as $k(a-b) $ where $$a=sqrt[n]{prod_{i=1}^{n}left(1+frac{x_i}{k}right)}, b=1$$ and further $a-b=(a^n-b^n) / c$ where $a, b$ tend to $1$ and $$c=a^{n-1}+a^{n-2}b+dots+ab^{n-2}+b^{n-1}$$ tends to $n$ as $ktoinfty$. And $$a^n-b^n=prod_{i=1}^{n}left(1+frac{x_i}{k}right)-1=frac{1}{k}sum_{i=1}^{n}x_i+o(1/k)$$ and thus $$k(a-b) =frac{1}{n}sum_{i=1}^{n}x_i+o(1)$$ and the desired limit as $ktoinfty$ is $dfrac{1}{n}sumlimits_{i=1}^{n}x_i$.






              share|cite|improve this answer























              • Why the downvote?
                – Paramanand Singh
                Nov 4 at 7:43










              • I thought you did not notice that only the geometric series is contained inside the nth-root, because I was unable to proceed the algebra with your suggestion, then I just left your answer unvoted.
                – Gustavo Ale
                Nov 4 at 11:34










              • @GustavoAle: Ok I will add details of $a, b, c$. I was trying to avoid typing large expressions but it appears the readability of post decreased way too much in that process.
                – Paramanand Singh
                Nov 4 at 11:36

















              up vote
              3
              down vote













              Your expression under limit can be written as $k(a-b) $ where $$a=sqrt[n]{prod_{i=1}^{n}left(1+frac{x_i}{k}right)}, b=1$$ and further $a-b=(a^n-b^n) / c$ where $a, b$ tend to $1$ and $$c=a^{n-1}+a^{n-2}b+dots+ab^{n-2}+b^{n-1}$$ tends to $n$ as $ktoinfty$. And $$a^n-b^n=prod_{i=1}^{n}left(1+frac{x_i}{k}right)-1=frac{1}{k}sum_{i=1}^{n}x_i+o(1/k)$$ and thus $$k(a-b) =frac{1}{n}sum_{i=1}^{n}x_i+o(1)$$ and the desired limit as $ktoinfty$ is $dfrac{1}{n}sumlimits_{i=1}^{n}x_i$.






              share|cite|improve this answer























              • Why the downvote?
                – Paramanand Singh
                Nov 4 at 7:43










              • I thought you did not notice that only the geometric series is contained inside the nth-root, because I was unable to proceed the algebra with your suggestion, then I just left your answer unvoted.
                – Gustavo Ale
                Nov 4 at 11:34










              • @GustavoAle: Ok I will add details of $a, b, c$. I was trying to avoid typing large expressions but it appears the readability of post decreased way too much in that process.
                – Paramanand Singh
                Nov 4 at 11:36















              up vote
              3
              down vote










              up vote
              3
              down vote









              Your expression under limit can be written as $k(a-b) $ where $$a=sqrt[n]{prod_{i=1}^{n}left(1+frac{x_i}{k}right)}, b=1$$ and further $a-b=(a^n-b^n) / c$ where $a, b$ tend to $1$ and $$c=a^{n-1}+a^{n-2}b+dots+ab^{n-2}+b^{n-1}$$ tends to $n$ as $ktoinfty$. And $$a^n-b^n=prod_{i=1}^{n}left(1+frac{x_i}{k}right)-1=frac{1}{k}sum_{i=1}^{n}x_i+o(1/k)$$ and thus $$k(a-b) =frac{1}{n}sum_{i=1}^{n}x_i+o(1)$$ and the desired limit as $ktoinfty$ is $dfrac{1}{n}sumlimits_{i=1}^{n}x_i$.






              share|cite|improve this answer














              Your expression under limit can be written as $k(a-b) $ where $$a=sqrt[n]{prod_{i=1}^{n}left(1+frac{x_i}{k}right)}, b=1$$ and further $a-b=(a^n-b^n) / c$ where $a, b$ tend to $1$ and $$c=a^{n-1}+a^{n-2}b+dots+ab^{n-2}+b^{n-1}$$ tends to $n$ as $ktoinfty$. And $$a^n-b^n=prod_{i=1}^{n}left(1+frac{x_i}{k}right)-1=frac{1}{k}sum_{i=1}^{n}x_i+o(1/k)$$ and thus $$k(a-b) =frac{1}{n}sum_{i=1}^{n}x_i+o(1)$$ and the desired limit as $ktoinfty$ is $dfrac{1}{n}sumlimits_{i=1}^{n}x_i$.







              share|cite|improve this answer














              share|cite|improve this answer



              share|cite|improve this answer








              edited Nov 4 at 11:39

























              answered Nov 4 at 2:14









              Paramanand Singh

              47.5k555151




              47.5k555151












              • Why the downvote?
                – Paramanand Singh
                Nov 4 at 7:43










              • I thought you did not notice that only the geometric series is contained inside the nth-root, because I was unable to proceed the algebra with your suggestion, then I just left your answer unvoted.
                – Gustavo Ale
                Nov 4 at 11:34










              • @GustavoAle: Ok I will add details of $a, b, c$. I was trying to avoid typing large expressions but it appears the readability of post decreased way too much in that process.
                – Paramanand Singh
                Nov 4 at 11:36




















              • Why the downvote?
                – Paramanand Singh
                Nov 4 at 7:43










              • I thought you did not notice that only the geometric series is contained inside the nth-root, because I was unable to proceed the algebra with your suggestion, then I just left your answer unvoted.
                – Gustavo Ale
                Nov 4 at 11:34










              • @GustavoAle: Ok I will add details of $a, b, c$. I was trying to avoid typing large expressions but it appears the readability of post decreased way too much in that process.
                – Paramanand Singh
                Nov 4 at 11:36


















              Why the downvote?
              – Paramanand Singh
              Nov 4 at 7:43




              Why the downvote?
              – Paramanand Singh
              Nov 4 at 7:43












              I thought you did not notice that only the geometric series is contained inside the nth-root, because I was unable to proceed the algebra with your suggestion, then I just left your answer unvoted.
              – Gustavo Ale
              Nov 4 at 11:34




              I thought you did not notice that only the geometric series is contained inside the nth-root, because I was unable to proceed the algebra with your suggestion, then I just left your answer unvoted.
              – Gustavo Ale
              Nov 4 at 11:34












              @GustavoAle: Ok I will add details of $a, b, c$. I was trying to avoid typing large expressions but it appears the readability of post decreased way too much in that process.
              – Paramanand Singh
              Nov 4 at 11:36






              @GustavoAle: Ok I will add details of $a, b, c$. I was trying to avoid typing large expressions but it appears the readability of post decreased way too much in that process.
              – Paramanand Singh
              Nov 4 at 11:36












              up vote
              1
              down vote













              You can also give an argument using L'Hopital's rule:
              begin{align*}
              lim_{k to infty} sqrt[n]{prod_{i = 1}^n (x_i + k)} - k &= lim_{k to infty} frac{sqrt[n]{prod_{i = 1}^n left(frac{x_i}{k} + 1right)} - 1}{frac{1}{k}} \
              &overset{(H)}{=} lim_{k to infty} frac{frac{1}{n} cdot frac{sum_{i = 1}^n frac{-x_i}{k^2} cdot prod_{j ne i} left(frac{x_i}{k} + 1right)}{left(prod_{i = 1}^n left(frac{x_i}{k} + 1right)right)^{1 - 1/n}}}{frac{-1}{k^2}} \
              &= lim_{k to infty}frac{1}{n} cdot frac{sum_{i = 1}^n x_i cdot prod_{j ne i} left(frac{x_i}{k} + 1right)}{left(prod_{i = 1}^n left(frac{x_i}{k} + 1right)right)^{1 - 1/n}} \
              &= frac{sum_{i = 1}^n x_i}{n}
              end{align*}






              share|cite|improve this answer

























                up vote
                1
                down vote













                You can also give an argument using L'Hopital's rule:
                begin{align*}
                lim_{k to infty} sqrt[n]{prod_{i = 1}^n (x_i + k)} - k &= lim_{k to infty} frac{sqrt[n]{prod_{i = 1}^n left(frac{x_i}{k} + 1right)} - 1}{frac{1}{k}} \
                &overset{(H)}{=} lim_{k to infty} frac{frac{1}{n} cdot frac{sum_{i = 1}^n frac{-x_i}{k^2} cdot prod_{j ne i} left(frac{x_i}{k} + 1right)}{left(prod_{i = 1}^n left(frac{x_i}{k} + 1right)right)^{1 - 1/n}}}{frac{-1}{k^2}} \
                &= lim_{k to infty}frac{1}{n} cdot frac{sum_{i = 1}^n x_i cdot prod_{j ne i} left(frac{x_i}{k} + 1right)}{left(prod_{i = 1}^n left(frac{x_i}{k} + 1right)right)^{1 - 1/n}} \
                &= frac{sum_{i = 1}^n x_i}{n}
                end{align*}






                share|cite|improve this answer























                  up vote
                  1
                  down vote










                  up vote
                  1
                  down vote









                  You can also give an argument using L'Hopital's rule:
                  begin{align*}
                  lim_{k to infty} sqrt[n]{prod_{i = 1}^n (x_i + k)} - k &= lim_{k to infty} frac{sqrt[n]{prod_{i = 1}^n left(frac{x_i}{k} + 1right)} - 1}{frac{1}{k}} \
                  &overset{(H)}{=} lim_{k to infty} frac{frac{1}{n} cdot frac{sum_{i = 1}^n frac{-x_i}{k^2} cdot prod_{j ne i} left(frac{x_i}{k} + 1right)}{left(prod_{i = 1}^n left(frac{x_i}{k} + 1right)right)^{1 - 1/n}}}{frac{-1}{k^2}} \
                  &= lim_{k to infty}frac{1}{n} cdot frac{sum_{i = 1}^n x_i cdot prod_{j ne i} left(frac{x_i}{k} + 1right)}{left(prod_{i = 1}^n left(frac{x_i}{k} + 1right)right)^{1 - 1/n}} \
                  &= frac{sum_{i = 1}^n x_i}{n}
                  end{align*}






                  share|cite|improve this answer












                  You can also give an argument using L'Hopital's rule:
                  begin{align*}
                  lim_{k to infty} sqrt[n]{prod_{i = 1}^n (x_i + k)} - k &= lim_{k to infty} frac{sqrt[n]{prod_{i = 1}^n left(frac{x_i}{k} + 1right)} - 1}{frac{1}{k}} \
                  &overset{(H)}{=} lim_{k to infty} frac{frac{1}{n} cdot frac{sum_{i = 1}^n frac{-x_i}{k^2} cdot prod_{j ne i} left(frac{x_i}{k} + 1right)}{left(prod_{i = 1}^n left(frac{x_i}{k} + 1right)right)^{1 - 1/n}}}{frac{-1}{k^2}} \
                  &= lim_{k to infty}frac{1}{n} cdot frac{sum_{i = 1}^n x_i cdot prod_{j ne i} left(frac{x_i}{k} + 1right)}{left(prod_{i = 1}^n left(frac{x_i}{k} + 1right)right)^{1 - 1/n}} \
                  &= frac{sum_{i = 1}^n x_i}{n}
                  end{align*}







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Nov 4 at 11:01









                  P. Senden

                  701112




                  701112






















                      up vote
                      1
                      down vote













                      $$
                      begin{align}
                      lim_{ktoinfty}left[left(prod_{i=1}^n(x_i+k)right)^{1/n}-kright]
                      &=lim_{ktoinfty}kleft[prod_{i=1}^nleft(1+frac{x_i}kright)^{1/n}-1right]\
                      &=lim_{ktoinfty}frac{prodlimits_{i=1}^nleft(1+frac{x_i}kright)^{1/n}-1}{logleft(prodlimits_{i=1}^nleft(1+frac{x_i}kright)^{1/n}right)}cdotlim_{ktoinfty}frac knsum_{i=1}^nlogleft(1+frac{x_i}kright)\
                      &=lim_{xto1}frac{x-1}{log(x)}cdotfrac1nsum_{i=1}^nlim_{ktoinfty}klogleft(1+frac{x_i}kright)\[9pt]
                      &=frac1nsum_{i=1}^nx_i
                      end{align}
                      $$






                      share|cite|improve this answer

























                        up vote
                        1
                        down vote













                        $$
                        begin{align}
                        lim_{ktoinfty}left[left(prod_{i=1}^n(x_i+k)right)^{1/n}-kright]
                        &=lim_{ktoinfty}kleft[prod_{i=1}^nleft(1+frac{x_i}kright)^{1/n}-1right]\
                        &=lim_{ktoinfty}frac{prodlimits_{i=1}^nleft(1+frac{x_i}kright)^{1/n}-1}{logleft(prodlimits_{i=1}^nleft(1+frac{x_i}kright)^{1/n}right)}cdotlim_{ktoinfty}frac knsum_{i=1}^nlogleft(1+frac{x_i}kright)\
                        &=lim_{xto1}frac{x-1}{log(x)}cdotfrac1nsum_{i=1}^nlim_{ktoinfty}klogleft(1+frac{x_i}kright)\[9pt]
                        &=frac1nsum_{i=1}^nx_i
                        end{align}
                        $$






                        share|cite|improve this answer























                          up vote
                          1
                          down vote










                          up vote
                          1
                          down vote









                          $$
                          begin{align}
                          lim_{ktoinfty}left[left(prod_{i=1}^n(x_i+k)right)^{1/n}-kright]
                          &=lim_{ktoinfty}kleft[prod_{i=1}^nleft(1+frac{x_i}kright)^{1/n}-1right]\
                          &=lim_{ktoinfty}frac{prodlimits_{i=1}^nleft(1+frac{x_i}kright)^{1/n}-1}{logleft(prodlimits_{i=1}^nleft(1+frac{x_i}kright)^{1/n}right)}cdotlim_{ktoinfty}frac knsum_{i=1}^nlogleft(1+frac{x_i}kright)\
                          &=lim_{xto1}frac{x-1}{log(x)}cdotfrac1nsum_{i=1}^nlim_{ktoinfty}klogleft(1+frac{x_i}kright)\[9pt]
                          &=frac1nsum_{i=1}^nx_i
                          end{align}
                          $$






                          share|cite|improve this answer












                          $$
                          begin{align}
                          lim_{ktoinfty}left[left(prod_{i=1}^n(x_i+k)right)^{1/n}-kright]
                          &=lim_{ktoinfty}kleft[prod_{i=1}^nleft(1+frac{x_i}kright)^{1/n}-1right]\
                          &=lim_{ktoinfty}frac{prodlimits_{i=1}^nleft(1+frac{x_i}kright)^{1/n}-1}{logleft(prodlimits_{i=1}^nleft(1+frac{x_i}kright)^{1/n}right)}cdotlim_{ktoinfty}frac knsum_{i=1}^nlogleft(1+frac{x_i}kright)\
                          &=lim_{xto1}frac{x-1}{log(x)}cdotfrac1nsum_{i=1}^nlim_{ktoinfty}klogleft(1+frac{x_i}kright)\[9pt]
                          &=frac1nsum_{i=1}^nx_i
                          end{align}
                          $$







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Nov 4 at 12:34









                          robjohn

                          261k27300618




                          261k27300618






















                              Gustavo Ale is a new contributor. Be nice, and check out our Code of Conduct.










                               

                              draft saved


                              draft discarded


















                              Gustavo Ale is a new contributor. Be nice, and check out our Code of Conduct.













                              Gustavo Ale is a new contributor. Be nice, and check out our Code of Conduct.












                              Gustavo Ale is a new contributor. Be nice, and check out our Code of Conduct.















                               


                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2983641%2fprove-that-lim-k-to-infty-sqrtn-prod-i-1nx-ik-k-frac%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest




















































































                              這個網誌中的熱門文章

                              Tangent Lines Diagram Along Smooth Curve

                              Yusuf al-Mu'taman ibn Hud

                              Zucchini