SessionRunHook returning empty SessionRunValues after run
I'm trying to write a hook that will allow me to compute some global metrics (rather than batch-wise metrics). To prototype, I thought I'd get a simple hook up and running that would capture and remember true positives. It looks like this:
class TPHook(tf.train.SessionRunHook):
def after_create_session(self, session, coord):
print("Starting Hook")
tp_name = 'metrics/f1_macro/TP'
self.tp =
self.args = session.graph.get_operation_by_name(tp_name)
print(f"Got Args: {self.args}")
def before_run(self, run_context):
print("Starting Before Run")
return tf.train.SessionRunArgs(self.args)
def after_run(self, run_context, run_values):
print("After Run")
print(f"Got Values: {run_values.results}")
However, the values returned in the "after_run" part of the hook are always None. I tested this in both the train and evaluation phase. Am I misunderstanding something about how the SessionRunHooks are supposed to work?
Maybe relevant information:
The model was build in keras and converted to an estimator with the keras.estimator.model_to_estimator()
function. The model has been tested and works fine, and the op that I'm trying to retrieve in the hook is defined in this code block:
def _f1_macro_vector(y_true, y_pred):
"""Computes the F1-score with Macro averaging.
Arguments:
y_true {tf.Tensor} -- Ground-truth labels
y_pred {tf.Tensor} -- Predicted labels
Returns:
tf.Tensor -- The computed F1-Score
"""
y_true = K.cast(y_true, tf.float64)
y_pred = K.cast(y_pred, tf.float64)
TP = tf.reduce_sum(y_true * K.round(y_pred), axis=0, name='TP')
FN = tf.reduce_sum(y_true * (1 - K.round(y_pred)), axis=0, name='FN')
FP = tf.reduce_sum((1 - y_true) * K.round(y_pred), axis=0, name='FP')
prec = TP / (TP + FP)
rec = TP / (TP + FN)
# Convert NaNs to Zero
prec = tf.where(tf.is_nan(prec), tf.zeros_like(prec), prec)
rec = tf.where(tf.is_nan(rec), tf.zeros_like(rec), rec)
f1 = 2 * (prec * rec) / (prec + rec)
# Convert NaN to Zero
f1 = tf.where(tf.is_nan(f1), tf.zeros_like(f1), f1)
return f1
python-3.x tensorflow keras tensorflow-estimator
add a comment |
I'm trying to write a hook that will allow me to compute some global metrics (rather than batch-wise metrics). To prototype, I thought I'd get a simple hook up and running that would capture and remember true positives. It looks like this:
class TPHook(tf.train.SessionRunHook):
def after_create_session(self, session, coord):
print("Starting Hook")
tp_name = 'metrics/f1_macro/TP'
self.tp =
self.args = session.graph.get_operation_by_name(tp_name)
print(f"Got Args: {self.args}")
def before_run(self, run_context):
print("Starting Before Run")
return tf.train.SessionRunArgs(self.args)
def after_run(self, run_context, run_values):
print("After Run")
print(f"Got Values: {run_values.results}")
However, the values returned in the "after_run" part of the hook are always None. I tested this in both the train and evaluation phase. Am I misunderstanding something about how the SessionRunHooks are supposed to work?
Maybe relevant information:
The model was build in keras and converted to an estimator with the keras.estimator.model_to_estimator()
function. The model has been tested and works fine, and the op that I'm trying to retrieve in the hook is defined in this code block:
def _f1_macro_vector(y_true, y_pred):
"""Computes the F1-score with Macro averaging.
Arguments:
y_true {tf.Tensor} -- Ground-truth labels
y_pred {tf.Tensor} -- Predicted labels
Returns:
tf.Tensor -- The computed F1-Score
"""
y_true = K.cast(y_true, tf.float64)
y_pred = K.cast(y_pred, tf.float64)
TP = tf.reduce_sum(y_true * K.round(y_pred), axis=0, name='TP')
FN = tf.reduce_sum(y_true * (1 - K.round(y_pred)), axis=0, name='FN')
FP = tf.reduce_sum((1 - y_true) * K.round(y_pred), axis=0, name='FP')
prec = TP / (TP + FP)
rec = TP / (TP + FN)
# Convert NaNs to Zero
prec = tf.where(tf.is_nan(prec), tf.zeros_like(prec), prec)
rec = tf.where(tf.is_nan(rec), tf.zeros_like(rec), rec)
f1 = 2 * (prec * rec) / (prec + rec)
# Convert NaN to Zero
f1 = tf.where(tf.is_nan(f1), tf.zeros_like(f1), f1)
return f1
python-3.x tensorflow keras tensorflow-estimator
add a comment |
I'm trying to write a hook that will allow me to compute some global metrics (rather than batch-wise metrics). To prototype, I thought I'd get a simple hook up and running that would capture and remember true positives. It looks like this:
class TPHook(tf.train.SessionRunHook):
def after_create_session(self, session, coord):
print("Starting Hook")
tp_name = 'metrics/f1_macro/TP'
self.tp =
self.args = session.graph.get_operation_by_name(tp_name)
print(f"Got Args: {self.args}")
def before_run(self, run_context):
print("Starting Before Run")
return tf.train.SessionRunArgs(self.args)
def after_run(self, run_context, run_values):
print("After Run")
print(f"Got Values: {run_values.results}")
However, the values returned in the "after_run" part of the hook are always None. I tested this in both the train and evaluation phase. Am I misunderstanding something about how the SessionRunHooks are supposed to work?
Maybe relevant information:
The model was build in keras and converted to an estimator with the keras.estimator.model_to_estimator()
function. The model has been tested and works fine, and the op that I'm trying to retrieve in the hook is defined in this code block:
def _f1_macro_vector(y_true, y_pred):
"""Computes the F1-score with Macro averaging.
Arguments:
y_true {tf.Tensor} -- Ground-truth labels
y_pred {tf.Tensor} -- Predicted labels
Returns:
tf.Tensor -- The computed F1-Score
"""
y_true = K.cast(y_true, tf.float64)
y_pred = K.cast(y_pred, tf.float64)
TP = tf.reduce_sum(y_true * K.round(y_pred), axis=0, name='TP')
FN = tf.reduce_sum(y_true * (1 - K.round(y_pred)), axis=0, name='FN')
FP = tf.reduce_sum((1 - y_true) * K.round(y_pred), axis=0, name='FP')
prec = TP / (TP + FP)
rec = TP / (TP + FN)
# Convert NaNs to Zero
prec = tf.where(tf.is_nan(prec), tf.zeros_like(prec), prec)
rec = tf.where(tf.is_nan(rec), tf.zeros_like(rec), rec)
f1 = 2 * (prec * rec) / (prec + rec)
# Convert NaN to Zero
f1 = tf.where(tf.is_nan(f1), tf.zeros_like(f1), f1)
return f1
python-3.x tensorflow keras tensorflow-estimator
I'm trying to write a hook that will allow me to compute some global metrics (rather than batch-wise metrics). To prototype, I thought I'd get a simple hook up and running that would capture and remember true positives. It looks like this:
class TPHook(tf.train.SessionRunHook):
def after_create_session(self, session, coord):
print("Starting Hook")
tp_name = 'metrics/f1_macro/TP'
self.tp =
self.args = session.graph.get_operation_by_name(tp_name)
print(f"Got Args: {self.args}")
def before_run(self, run_context):
print("Starting Before Run")
return tf.train.SessionRunArgs(self.args)
def after_run(self, run_context, run_values):
print("After Run")
print(f"Got Values: {run_values.results}")
However, the values returned in the "after_run" part of the hook are always None. I tested this in both the train and evaluation phase. Am I misunderstanding something about how the SessionRunHooks are supposed to work?
Maybe relevant information:
The model was build in keras and converted to an estimator with the keras.estimator.model_to_estimator()
function. The model has been tested and works fine, and the op that I'm trying to retrieve in the hook is defined in this code block:
def _f1_macro_vector(y_true, y_pred):
"""Computes the F1-score with Macro averaging.
Arguments:
y_true {tf.Tensor} -- Ground-truth labels
y_pred {tf.Tensor} -- Predicted labels
Returns:
tf.Tensor -- The computed F1-Score
"""
y_true = K.cast(y_true, tf.float64)
y_pred = K.cast(y_pred, tf.float64)
TP = tf.reduce_sum(y_true * K.round(y_pred), axis=0, name='TP')
FN = tf.reduce_sum(y_true * (1 - K.round(y_pred)), axis=0, name='FN')
FP = tf.reduce_sum((1 - y_true) * K.round(y_pred), axis=0, name='FP')
prec = TP / (TP + FP)
rec = TP / (TP + FN)
# Convert NaNs to Zero
prec = tf.where(tf.is_nan(prec), tf.zeros_like(prec), prec)
rec = tf.where(tf.is_nan(rec), tf.zeros_like(rec), rec)
f1 = 2 * (prec * rec) / (prec + rec)
# Convert NaN to Zero
f1 = tf.where(tf.is_nan(f1), tf.zeros_like(f1), f1)
return f1
python-3.x tensorflow keras tensorflow-estimator
python-3.x tensorflow keras tensorflow-estimator
asked Nov 8 '18 at 23:12
mattdeakmattdeak
13810
13810
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
In case anyone runs into the same problem, I found out how to restructure the program so that it worked. Although the documentation makes it sound like I can pass raw ops into the SessionRunArgs
, it seems like it requires actual tensors (maybe this is a misreading on my part).
This is pretty easy to accomplish - I just changed the after_create_session
code to what's shown below.
def after_create_session(self, session, coord):
tp_name = 'metrics/f1_macro/TP'
self.tp =
tp_tensor = session.graph.get_tensor_by_name(tp_name+':0')
self.args = [tp_tensor]
And this successfully runs.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53217564%2fsessionrunhook-returning-empty-sessionrunvalues-after-run%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
In case anyone runs into the same problem, I found out how to restructure the program so that it worked. Although the documentation makes it sound like I can pass raw ops into the SessionRunArgs
, it seems like it requires actual tensors (maybe this is a misreading on my part).
This is pretty easy to accomplish - I just changed the after_create_session
code to what's shown below.
def after_create_session(self, session, coord):
tp_name = 'metrics/f1_macro/TP'
self.tp =
tp_tensor = session.graph.get_tensor_by_name(tp_name+':0')
self.args = [tp_tensor]
And this successfully runs.
add a comment |
In case anyone runs into the same problem, I found out how to restructure the program so that it worked. Although the documentation makes it sound like I can pass raw ops into the SessionRunArgs
, it seems like it requires actual tensors (maybe this is a misreading on my part).
This is pretty easy to accomplish - I just changed the after_create_session
code to what's shown below.
def after_create_session(self, session, coord):
tp_name = 'metrics/f1_macro/TP'
self.tp =
tp_tensor = session.graph.get_tensor_by_name(tp_name+':0')
self.args = [tp_tensor]
And this successfully runs.
add a comment |
In case anyone runs into the same problem, I found out how to restructure the program so that it worked. Although the documentation makes it sound like I can pass raw ops into the SessionRunArgs
, it seems like it requires actual tensors (maybe this is a misreading on my part).
This is pretty easy to accomplish - I just changed the after_create_session
code to what's shown below.
def after_create_session(self, session, coord):
tp_name = 'metrics/f1_macro/TP'
self.tp =
tp_tensor = session.graph.get_tensor_by_name(tp_name+':0')
self.args = [tp_tensor]
And this successfully runs.
In case anyone runs into the same problem, I found out how to restructure the program so that it worked. Although the documentation makes it sound like I can pass raw ops into the SessionRunArgs
, it seems like it requires actual tensors (maybe this is a misreading on my part).
This is pretty easy to accomplish - I just changed the after_create_session
code to what's shown below.
def after_create_session(self, session, coord):
tp_name = 'metrics/f1_macro/TP'
self.tp =
tp_tensor = session.graph.get_tensor_by_name(tp_name+':0')
self.args = [tp_tensor]
And this successfully runs.
answered Nov 13 '18 at 20:40
mattdeakmattdeak
13810
13810
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53217564%2fsessionrunhook-returning-empty-sessionrunvalues-after-run%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown