How to use Julia to compute the pearson correlation coefficient with p-value?












1















I am looking for help to calculate the Pearson correlation coefficient with p-value by using Julia language. The analogous function in Python is scipy.stats.pearson.



The Julia function below only gives me the correlation. Appreciate your help/hint about the p-value part.



using RDatasets, Statistics
iris = dataset("datasets", "iris");
Statistics.cor(iris.SepalLength, iris.SepalWidth)









share|improve this question





























    1















    I am looking for help to calculate the Pearson correlation coefficient with p-value by using Julia language. The analogous function in Python is scipy.stats.pearson.



    The Julia function below only gives me the correlation. Appreciate your help/hint about the p-value part.



    using RDatasets, Statistics
    iris = dataset("datasets", "iris");
    Statistics.cor(iris.SepalLength, iris.SepalWidth)









    share|improve this question



























      1












      1








      1








      I am looking for help to calculate the Pearson correlation coefficient with p-value by using Julia language. The analogous function in Python is scipy.stats.pearson.



      The Julia function below only gives me the correlation. Appreciate your help/hint about the p-value part.



      using RDatasets, Statistics
      iris = dataset("datasets", "iris");
      Statistics.cor(iris.SepalLength, iris.SepalWidth)









      share|improve this question
















      I am looking for help to calculate the Pearson correlation coefficient with p-value by using Julia language. The analogous function in Python is scipy.stats.pearson.



      The Julia function below only gives me the correlation. Appreciate your help/hint about the p-value part.



      using RDatasets, Statistics
      iris = dataset("datasets", "iris");
      Statistics.cor(iris.SepalLength, iris.SepalWidth)






      julia-lang






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Nov 16 '18 at 21:39







      Puriney

















      asked Nov 16 '18 at 21:34









      PurineyPuriney

      90821022




      90821022
























          1 Answer
          1






          active

          oldest

          votes


















          2














          I do not know about an existing implementation but here is a two-sided test with H0 equal to 0 using Fisher transformation:



          using Distributions

          cortest(x,y) =
          if length(x) == length(y)
          2 * ccdf(Normal(), atanh(abs(cor(x, y))) * sqrt(length(x) - 3))
          else
          error("x and y have different lengths")
          end


          or use the HypothesisTests.jl package, e.g.:



          using HypothesisTests

          OneSampleZTest(atanh(cor(iris.SepalLength, iris.SepalWidth)),
          1, nrow(iris)-3)





          share|improve this answer

























            Your Answer






            StackExchange.ifUsing("editor", function () {
            StackExchange.using("externalEditor", function () {
            StackExchange.using("snippets", function () {
            StackExchange.snippets.init();
            });
            });
            }, "code-snippets");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "1"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53345724%2fhow-to-use-julia-to-compute-the-pearson-correlation-coefficient-with-p-value%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2














            I do not know about an existing implementation but here is a two-sided test with H0 equal to 0 using Fisher transformation:



            using Distributions

            cortest(x,y) =
            if length(x) == length(y)
            2 * ccdf(Normal(), atanh(abs(cor(x, y))) * sqrt(length(x) - 3))
            else
            error("x and y have different lengths")
            end


            or use the HypothesisTests.jl package, e.g.:



            using HypothesisTests

            OneSampleZTest(atanh(cor(iris.SepalLength, iris.SepalWidth)),
            1, nrow(iris)-3)





            share|improve this answer






























              2














              I do not know about an existing implementation but here is a two-sided test with H0 equal to 0 using Fisher transformation:



              using Distributions

              cortest(x,y) =
              if length(x) == length(y)
              2 * ccdf(Normal(), atanh(abs(cor(x, y))) * sqrt(length(x) - 3))
              else
              error("x and y have different lengths")
              end


              or use the HypothesisTests.jl package, e.g.:



              using HypothesisTests

              OneSampleZTest(atanh(cor(iris.SepalLength, iris.SepalWidth)),
              1, nrow(iris)-3)





              share|improve this answer




























                2












                2








                2







                I do not know about an existing implementation but here is a two-sided test with H0 equal to 0 using Fisher transformation:



                using Distributions

                cortest(x,y) =
                if length(x) == length(y)
                2 * ccdf(Normal(), atanh(abs(cor(x, y))) * sqrt(length(x) - 3))
                else
                error("x and y have different lengths")
                end


                or use the HypothesisTests.jl package, e.g.:



                using HypothesisTests

                OneSampleZTest(atanh(cor(iris.SepalLength, iris.SepalWidth)),
                1, nrow(iris)-3)





                share|improve this answer















                I do not know about an existing implementation but here is a two-sided test with H0 equal to 0 using Fisher transformation:



                using Distributions

                cortest(x,y) =
                if length(x) == length(y)
                2 * ccdf(Normal(), atanh(abs(cor(x, y))) * sqrt(length(x) - 3))
                else
                error("x and y have different lengths")
                end


                or use the HypothesisTests.jl package, e.g.:



                using HypothesisTests

                OneSampleZTest(atanh(cor(iris.SepalLength, iris.SepalWidth)),
                1, nrow(iris)-3)






                share|improve this answer














                share|improve this answer



                share|improve this answer








                edited Nov 17 '18 at 8:50

























                answered Nov 16 '18 at 22:02









                Bogumił KamińskiBogumił Kamiński

                12.8k11220




                12.8k11220






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Stack Overflow!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53345724%2fhow-to-use-julia-to-compute-the-pearson-correlation-coefficient-with-p-value%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    這個網誌中的熱門文章

                    Xamarin.form Move up view when keyboard appear

                    Post-Redirect-Get with Spring WebFlux and Thymeleaf

                    Anylogic : not able to use stopDelay()