Apache Airflow: print query success on logging info, query failure on logging.error












0















My question is regarding the logging of query successes or failure, done by the BigQueryOperator of Apache Airflow 1.10.0 I am wondering if it is possible to print query success on logging.info, and if it is a failure to print on logging.error?



from airflow.contrib.operators import bigquery_operator
# Query recent StackOverflow questions.
bq_recent_questions_query = bigquery_operator.BigQueryOperator(
task_id='bq_recent_questions_query',
bql="""
SELECT owner_display_name, title, view_count
FROM `bigquery-public-data.stackoverflow.posts_questions`
WHERE creation_date < CAST('{max_date}' AS TIMESTAMP)
AND creation_date >= CAST('{min_date}' AS TIMESTAMP)
ORDER BY view_count DESC
LIMIT 100
""".format(max_date=max_query_date, min_date=min_query_date),
use_legacy_sql=False,
destination_dataset_table=bq_recent_questions_table_id)


https://cloud.google.com/composer/docs/how-to/using/writing-dags










share|improve this question





























    0















    My question is regarding the logging of query successes or failure, done by the BigQueryOperator of Apache Airflow 1.10.0 I am wondering if it is possible to print query success on logging.info, and if it is a failure to print on logging.error?



    from airflow.contrib.operators import bigquery_operator
    # Query recent StackOverflow questions.
    bq_recent_questions_query = bigquery_operator.BigQueryOperator(
    task_id='bq_recent_questions_query',
    bql="""
    SELECT owner_display_name, title, view_count
    FROM `bigquery-public-data.stackoverflow.posts_questions`
    WHERE creation_date < CAST('{max_date}' AS TIMESTAMP)
    AND creation_date >= CAST('{min_date}' AS TIMESTAMP)
    ORDER BY view_count DESC
    LIMIT 100
    """.format(max_date=max_query_date, min_date=min_query_date),
    use_legacy_sql=False,
    destination_dataset_table=bq_recent_questions_table_id)


    https://cloud.google.com/composer/docs/how-to/using/writing-dags










    share|improve this question



























      0












      0








      0








      My question is regarding the logging of query successes or failure, done by the BigQueryOperator of Apache Airflow 1.10.0 I am wondering if it is possible to print query success on logging.info, and if it is a failure to print on logging.error?



      from airflow.contrib.operators import bigquery_operator
      # Query recent StackOverflow questions.
      bq_recent_questions_query = bigquery_operator.BigQueryOperator(
      task_id='bq_recent_questions_query',
      bql="""
      SELECT owner_display_name, title, view_count
      FROM `bigquery-public-data.stackoverflow.posts_questions`
      WHERE creation_date < CAST('{max_date}' AS TIMESTAMP)
      AND creation_date >= CAST('{min_date}' AS TIMESTAMP)
      ORDER BY view_count DESC
      LIMIT 100
      """.format(max_date=max_query_date, min_date=min_query_date),
      use_legacy_sql=False,
      destination_dataset_table=bq_recent_questions_table_id)


      https://cloud.google.com/composer/docs/how-to/using/writing-dags










      share|improve this question
















      My question is regarding the logging of query successes or failure, done by the BigQueryOperator of Apache Airflow 1.10.0 I am wondering if it is possible to print query success on logging.info, and if it is a failure to print on logging.error?



      from airflow.contrib.operators import bigquery_operator
      # Query recent StackOverflow questions.
      bq_recent_questions_query = bigquery_operator.BigQueryOperator(
      task_id='bq_recent_questions_query',
      bql="""
      SELECT owner_display_name, title, view_count
      FROM `bigquery-public-data.stackoverflow.posts_questions`
      WHERE creation_date < CAST('{max_date}' AS TIMESTAMP)
      AND creation_date >= CAST('{min_date}' AS TIMESTAMP)
      ORDER BY view_count DESC
      LIMIT 100
      """.format(max_date=max_query_date, min_date=min_query_date),
      use_legacy_sql=False,
      destination_dataset_table=bq_recent_questions_table_id)


      https://cloud.google.com/composer/docs/how-to/using/writing-dags







      python google-bigquery airflow






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Nov 21 '18 at 8:32









      Meghdeep Ray

      2,56831838




      2,56831838










      asked Nov 20 '18 at 10:20









      Paul VelthuisPaul Velthuis

      141112




      141112
























          2 Answers
          2






          active

          oldest

          votes


















          0














          You could make your own Operator by just copying the BigQueryOperator and making the following changes to the execute and on_kill functions inside it, or you could override the existing BigQueryOperator as well.



          def execute(self, context):
          if self.bq_cursor is None:
          self.log.info( "Beginnging Execution." )
          hook = BigQueryHook(
          bigquery_conn_id=self.bigquery_conn_id,
          use_legacy_sql=self.use_legacy_sql,
          delegate_to=self.delegate_to)
          conn = hook.get_conn()
          self.bq_cursor = conn.cursor()
          self.bq_cursor.run_query(
          self.sql,
          destination_dataset_table=self.destination_dataset_table,
          write_disposition=self.write_disposition,
          allow_large_results=self.allow_large_results,
          flatten_results=self.flatten_results,
          udf_config=self.udf_config,
          maximum_billing_tier=self.maximum_billing_tier,
          maximum_bytes_billed=self.maximum_bytes_billed,
          create_disposition=self.create_disposition,
          query_params=self.query_params,
          labels=self.labels,
          schema_update_options=self.schema_update_options,
          priority=self.priority,
          time_partitioning=self.time_partitioning
          )
          self.log.info( "Executed: %s" % self.sql )

          def on_kill(self):
          super(BigQueryOperator, self).on_kill()
          self.log.error( "Failed to Execute: %s" % self.sql )
          if self.bq_cursor is not None:
          self.log.info('Canceling running query due to execution timeout')
          self.bq_cursor.cancel_query()


          You have to put in custom operators into the plugins directory.






          share|improve this answer































            1














            Looks like the code logs the query prior to execution, so the outcome is not known at the time the log is written.






            share|improve this answer























              Your Answer






              StackExchange.ifUsing("editor", function () {
              StackExchange.using("externalEditor", function () {
              StackExchange.using("snippets", function () {
              StackExchange.snippets.init();
              });
              });
              }, "code-snippets");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "1"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53390834%2fapache-airflow-print-query-success-on-logging-info-query-failure-on-logging-er%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              0














              You could make your own Operator by just copying the BigQueryOperator and making the following changes to the execute and on_kill functions inside it, or you could override the existing BigQueryOperator as well.



              def execute(self, context):
              if self.bq_cursor is None:
              self.log.info( "Beginnging Execution." )
              hook = BigQueryHook(
              bigquery_conn_id=self.bigquery_conn_id,
              use_legacy_sql=self.use_legacy_sql,
              delegate_to=self.delegate_to)
              conn = hook.get_conn()
              self.bq_cursor = conn.cursor()
              self.bq_cursor.run_query(
              self.sql,
              destination_dataset_table=self.destination_dataset_table,
              write_disposition=self.write_disposition,
              allow_large_results=self.allow_large_results,
              flatten_results=self.flatten_results,
              udf_config=self.udf_config,
              maximum_billing_tier=self.maximum_billing_tier,
              maximum_bytes_billed=self.maximum_bytes_billed,
              create_disposition=self.create_disposition,
              query_params=self.query_params,
              labels=self.labels,
              schema_update_options=self.schema_update_options,
              priority=self.priority,
              time_partitioning=self.time_partitioning
              )
              self.log.info( "Executed: %s" % self.sql )

              def on_kill(self):
              super(BigQueryOperator, self).on_kill()
              self.log.error( "Failed to Execute: %s" % self.sql )
              if self.bq_cursor is not None:
              self.log.info('Canceling running query due to execution timeout')
              self.bq_cursor.cancel_query()


              You have to put in custom operators into the plugins directory.






              share|improve this answer




























                0














                You could make your own Operator by just copying the BigQueryOperator and making the following changes to the execute and on_kill functions inside it, or you could override the existing BigQueryOperator as well.



                def execute(self, context):
                if self.bq_cursor is None:
                self.log.info( "Beginnging Execution." )
                hook = BigQueryHook(
                bigquery_conn_id=self.bigquery_conn_id,
                use_legacy_sql=self.use_legacy_sql,
                delegate_to=self.delegate_to)
                conn = hook.get_conn()
                self.bq_cursor = conn.cursor()
                self.bq_cursor.run_query(
                self.sql,
                destination_dataset_table=self.destination_dataset_table,
                write_disposition=self.write_disposition,
                allow_large_results=self.allow_large_results,
                flatten_results=self.flatten_results,
                udf_config=self.udf_config,
                maximum_billing_tier=self.maximum_billing_tier,
                maximum_bytes_billed=self.maximum_bytes_billed,
                create_disposition=self.create_disposition,
                query_params=self.query_params,
                labels=self.labels,
                schema_update_options=self.schema_update_options,
                priority=self.priority,
                time_partitioning=self.time_partitioning
                )
                self.log.info( "Executed: %s" % self.sql )

                def on_kill(self):
                super(BigQueryOperator, self).on_kill()
                self.log.error( "Failed to Execute: %s" % self.sql )
                if self.bq_cursor is not None:
                self.log.info('Canceling running query due to execution timeout')
                self.bq_cursor.cancel_query()


                You have to put in custom operators into the plugins directory.






                share|improve this answer


























                  0












                  0








                  0







                  You could make your own Operator by just copying the BigQueryOperator and making the following changes to the execute and on_kill functions inside it, or you could override the existing BigQueryOperator as well.



                  def execute(self, context):
                  if self.bq_cursor is None:
                  self.log.info( "Beginnging Execution." )
                  hook = BigQueryHook(
                  bigquery_conn_id=self.bigquery_conn_id,
                  use_legacy_sql=self.use_legacy_sql,
                  delegate_to=self.delegate_to)
                  conn = hook.get_conn()
                  self.bq_cursor = conn.cursor()
                  self.bq_cursor.run_query(
                  self.sql,
                  destination_dataset_table=self.destination_dataset_table,
                  write_disposition=self.write_disposition,
                  allow_large_results=self.allow_large_results,
                  flatten_results=self.flatten_results,
                  udf_config=self.udf_config,
                  maximum_billing_tier=self.maximum_billing_tier,
                  maximum_bytes_billed=self.maximum_bytes_billed,
                  create_disposition=self.create_disposition,
                  query_params=self.query_params,
                  labels=self.labels,
                  schema_update_options=self.schema_update_options,
                  priority=self.priority,
                  time_partitioning=self.time_partitioning
                  )
                  self.log.info( "Executed: %s" % self.sql )

                  def on_kill(self):
                  super(BigQueryOperator, self).on_kill()
                  self.log.error( "Failed to Execute: %s" % self.sql )
                  if self.bq_cursor is not None:
                  self.log.info('Canceling running query due to execution timeout')
                  self.bq_cursor.cancel_query()


                  You have to put in custom operators into the plugins directory.






                  share|improve this answer













                  You could make your own Operator by just copying the BigQueryOperator and making the following changes to the execute and on_kill functions inside it, or you could override the existing BigQueryOperator as well.



                  def execute(self, context):
                  if self.bq_cursor is None:
                  self.log.info( "Beginnging Execution." )
                  hook = BigQueryHook(
                  bigquery_conn_id=self.bigquery_conn_id,
                  use_legacy_sql=self.use_legacy_sql,
                  delegate_to=self.delegate_to)
                  conn = hook.get_conn()
                  self.bq_cursor = conn.cursor()
                  self.bq_cursor.run_query(
                  self.sql,
                  destination_dataset_table=self.destination_dataset_table,
                  write_disposition=self.write_disposition,
                  allow_large_results=self.allow_large_results,
                  flatten_results=self.flatten_results,
                  udf_config=self.udf_config,
                  maximum_billing_tier=self.maximum_billing_tier,
                  maximum_bytes_billed=self.maximum_bytes_billed,
                  create_disposition=self.create_disposition,
                  query_params=self.query_params,
                  labels=self.labels,
                  schema_update_options=self.schema_update_options,
                  priority=self.priority,
                  time_partitioning=self.time_partitioning
                  )
                  self.log.info( "Executed: %s" % self.sql )

                  def on_kill(self):
                  super(BigQueryOperator, self).on_kill()
                  self.log.error( "Failed to Execute: %s" % self.sql )
                  if self.bq_cursor is not None:
                  self.log.info('Canceling running query due to execution timeout')
                  self.bq_cursor.cancel_query()


                  You have to put in custom operators into the plugins directory.







                  share|improve this answer












                  share|improve this answer



                  share|improve this answer










                  answered Nov 21 '18 at 8:27









                  Meghdeep RayMeghdeep Ray

                  2,56831838




                  2,56831838

























                      1














                      Looks like the code logs the query prior to execution, so the outcome is not known at the time the log is written.






                      share|improve this answer




























                        1














                        Looks like the code logs the query prior to execution, so the outcome is not known at the time the log is written.






                        share|improve this answer


























                          1












                          1








                          1







                          Looks like the code logs the query prior to execution, so the outcome is not known at the time the log is written.






                          share|improve this answer













                          Looks like the code logs the query prior to execution, so the outcome is not known at the time the log is written.







                          share|improve this answer












                          share|improve this answer



                          share|improve this answer










                          answered Nov 20 '18 at 14:32









                          joebjoeb

                          2,20611519




                          2,20611519






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Stack Overflow!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53390834%2fapache-airflow-print-query-success-on-logging-info-query-failure-on-logging-er%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              這個網誌中的熱門文章

                              Xamarin.form Move up view when keyboard appear

                              Post-Redirect-Get with Spring WebFlux and Thymeleaf

                              Anylogic : not able to use stopDelay()