Drawing values from normal distribution to be used in Monte Carlo Simulation












0















I have defined a function, where the output is produced by a Monte Carlo Simulation.
When I make the call y(p,m,n,d), the output always stays the same "n" --> y = n



What am I doing wrong?



k = [0, 100]

for i in k:
p = np.random.normal(40,3,i)
m = np.random.normal(35,1,i)
n = np.random.normal(50,4,i)
d = np.random.normal(27,2.5,i)


def fct(p,m,n,d):
global u1
global u2
if np.any( n > 0):
return n
u1, u2 = np.asarray[np.log(0.6*n)], np.asarray[(math.e**d)**0.5]
if np.any(u1 != 0):
return u1
if np.any(u2 != 0):
return u2
if np.any( p > 0):
return p
G = np.log(p**2) + np.asarray(6*[math.e**(-m)]/u1) + 3/u2
return G

y = fct(p,m,n,d)









share|improve this question





























    0















    I have defined a function, where the output is produced by a Monte Carlo Simulation.
    When I make the call y(p,m,n,d), the output always stays the same "n" --> y = n



    What am I doing wrong?



    k = [0, 100]

    for i in k:
    p = np.random.normal(40,3,i)
    m = np.random.normal(35,1,i)
    n = np.random.normal(50,4,i)
    d = np.random.normal(27,2.5,i)


    def fct(p,m,n,d):
    global u1
    global u2
    if np.any( n > 0):
    return n
    u1, u2 = np.asarray[np.log(0.6*n)], np.asarray[(math.e**d)**0.5]
    if np.any(u1 != 0):
    return u1
    if np.any(u2 != 0):
    return u2
    if np.any( p > 0):
    return p
    G = np.log(p**2) + np.asarray(6*[math.e**(-m)]/u1) + 3/u2
    return G

    y = fct(p,m,n,d)









    share|improve this question



























      0












      0








      0








      I have defined a function, where the output is produced by a Monte Carlo Simulation.
      When I make the call y(p,m,n,d), the output always stays the same "n" --> y = n



      What am I doing wrong?



      k = [0, 100]

      for i in k:
      p = np.random.normal(40,3,i)
      m = np.random.normal(35,1,i)
      n = np.random.normal(50,4,i)
      d = np.random.normal(27,2.5,i)


      def fct(p,m,n,d):
      global u1
      global u2
      if np.any( n > 0):
      return n
      u1, u2 = np.asarray[np.log(0.6*n)], np.asarray[(math.e**d)**0.5]
      if np.any(u1 != 0):
      return u1
      if np.any(u2 != 0):
      return u2
      if np.any( p > 0):
      return p
      G = np.log(p**2) + np.asarray(6*[math.e**(-m)]/u1) + 3/u2
      return G

      y = fct(p,m,n,d)









      share|improve this question
















      I have defined a function, where the output is produced by a Monte Carlo Simulation.
      When I make the call y(p,m,n,d), the output always stays the same "n" --> y = n



      What am I doing wrong?



      k = [0, 100]

      for i in k:
      p = np.random.normal(40,3,i)
      m = np.random.normal(35,1,i)
      n = np.random.normal(50,4,i)
      d = np.random.normal(27,2.5,i)


      def fct(p,m,n,d):
      global u1
      global u2
      if np.any( n > 0):
      return n
      u1, u2 = np.asarray[np.log(0.6*n)], np.asarray[(math.e**d)**0.5]
      if np.any(u1 != 0):
      return u1
      if np.any(u2 != 0):
      return u2
      if np.any( p > 0):
      return p
      G = np.log(p**2) + np.asarray(6*[math.e**(-m)]/u1) + 3/u2
      return G

      y = fct(p,m,n,d)






      python function numpy gaussian montecarlo






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Nov 20 '18 at 11:56









      Nils Gudat

      2,15511434




      2,15511434










      asked Nov 20 '18 at 10:34









      PlopPlop

      104




      104
























          1 Answer
          1






          active

          oldest

          votes


















          0














          You are always hitting this case:



           if np.any( n > 0):
          return n


          This is happening because of the way you define n:



          n = np.random.normal(50,4,i)


          The mean is at 50 and the standard deviation is 4. So, you have a range between 46 and 54 which will contain only positive values.






          share|improve this answer

























            Your Answer






            StackExchange.ifUsing("editor", function () {
            StackExchange.using("externalEditor", function () {
            StackExchange.using("snippets", function () {
            StackExchange.snippets.init();
            });
            });
            }, "code-snippets");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "1"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53391084%2fdrawing-values-from-normal-distribution-to-be-used-in-monte-carlo-simulation%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0














            You are always hitting this case:



             if np.any( n > 0):
            return n


            This is happening because of the way you define n:



            n = np.random.normal(50,4,i)


            The mean is at 50 and the standard deviation is 4. So, you have a range between 46 and 54 which will contain only positive values.






            share|improve this answer






























              0














              You are always hitting this case:



               if np.any( n > 0):
              return n


              This is happening because of the way you define n:



              n = np.random.normal(50,4,i)


              The mean is at 50 and the standard deviation is 4. So, you have a range between 46 and 54 which will contain only positive values.






              share|improve this answer




























                0












                0








                0







                You are always hitting this case:



                 if np.any( n > 0):
                return n


                This is happening because of the way you define n:



                n = np.random.normal(50,4,i)


                The mean is at 50 and the standard deviation is 4. So, you have a range between 46 and 54 which will contain only positive values.






                share|improve this answer















                You are always hitting this case:



                 if np.any( n > 0):
                return n


                This is happening because of the way you define n:



                n = np.random.normal(50,4,i)


                The mean is at 50 and the standard deviation is 4. So, you have a range between 46 and 54 which will contain only positive values.







                share|improve this answer














                share|improve this answer



                share|improve this answer








                edited Nov 20 '18 at 10:57

























                answered Nov 20 '18 at 10:41









                Konstantin GrigorovKonstantin Grigorov

                1068




                1068
































                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Stack Overflow!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53391084%2fdrawing-values-from-normal-distribution-to-be-used-in-monte-carlo-simulation%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    這個網誌中的熱門文章

                    Xamarin.form Move up view when keyboard appear

                    Post-Redirect-Get with Spring WebFlux and Thymeleaf

                    Anylogic : not able to use stopDelay()