Drawing values from normal distribution to be used in Monte Carlo Simulation
I have defined a function, where the output is produced by a Monte Carlo Simulation.
When I make the call y(p,m,n,d)
, the output always stays the same "n" --> y = n
What am I doing wrong?
k = [0, 100]
for i in k:
p = np.random.normal(40,3,i)
m = np.random.normal(35,1,i)
n = np.random.normal(50,4,i)
d = np.random.normal(27,2.5,i)
def fct(p,m,n,d):
global u1
global u2
if np.any( n > 0):
return n
u1, u2 = np.asarray[np.log(0.6*n)], np.asarray[(math.e**d)**0.5]
if np.any(u1 != 0):
return u1
if np.any(u2 != 0):
return u2
if np.any( p > 0):
return p
G = np.log(p**2) + np.asarray(6*[math.e**(-m)]/u1) + 3/u2
return G
y = fct(p,m,n,d)
python function numpy gaussian montecarlo
add a comment |
I have defined a function, where the output is produced by a Monte Carlo Simulation.
When I make the call y(p,m,n,d)
, the output always stays the same "n" --> y = n
What am I doing wrong?
k = [0, 100]
for i in k:
p = np.random.normal(40,3,i)
m = np.random.normal(35,1,i)
n = np.random.normal(50,4,i)
d = np.random.normal(27,2.5,i)
def fct(p,m,n,d):
global u1
global u2
if np.any( n > 0):
return n
u1, u2 = np.asarray[np.log(0.6*n)], np.asarray[(math.e**d)**0.5]
if np.any(u1 != 0):
return u1
if np.any(u2 != 0):
return u2
if np.any( p > 0):
return p
G = np.log(p**2) + np.asarray(6*[math.e**(-m)]/u1) + 3/u2
return G
y = fct(p,m,n,d)
python function numpy gaussian montecarlo
add a comment |
I have defined a function, where the output is produced by a Monte Carlo Simulation.
When I make the call y(p,m,n,d)
, the output always stays the same "n" --> y = n
What am I doing wrong?
k = [0, 100]
for i in k:
p = np.random.normal(40,3,i)
m = np.random.normal(35,1,i)
n = np.random.normal(50,4,i)
d = np.random.normal(27,2.5,i)
def fct(p,m,n,d):
global u1
global u2
if np.any( n > 0):
return n
u1, u2 = np.asarray[np.log(0.6*n)], np.asarray[(math.e**d)**0.5]
if np.any(u1 != 0):
return u1
if np.any(u2 != 0):
return u2
if np.any( p > 0):
return p
G = np.log(p**2) + np.asarray(6*[math.e**(-m)]/u1) + 3/u2
return G
y = fct(p,m,n,d)
python function numpy gaussian montecarlo
I have defined a function, where the output is produced by a Monte Carlo Simulation.
When I make the call y(p,m,n,d)
, the output always stays the same "n" --> y = n
What am I doing wrong?
k = [0, 100]
for i in k:
p = np.random.normal(40,3,i)
m = np.random.normal(35,1,i)
n = np.random.normal(50,4,i)
d = np.random.normal(27,2.5,i)
def fct(p,m,n,d):
global u1
global u2
if np.any( n > 0):
return n
u1, u2 = np.asarray[np.log(0.6*n)], np.asarray[(math.e**d)**0.5]
if np.any(u1 != 0):
return u1
if np.any(u2 != 0):
return u2
if np.any( p > 0):
return p
G = np.log(p**2) + np.asarray(6*[math.e**(-m)]/u1) + 3/u2
return G
y = fct(p,m,n,d)
python function numpy gaussian montecarlo
python function numpy gaussian montecarlo
edited Nov 20 '18 at 11:56
Nils Gudat
2,15511434
2,15511434
asked Nov 20 '18 at 10:34
PlopPlop
104
104
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
You are always hitting this case:
if np.any( n > 0):
return n
This is happening because of the way you define n:
n = np.random.normal(50,4,i)
The mean is at 50 and the standard deviation is 4. So, you have a range between 46 and 54 which will contain only positive values.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53391084%2fdrawing-values-from-normal-distribution-to-be-used-in-monte-carlo-simulation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
You are always hitting this case:
if np.any( n > 0):
return n
This is happening because of the way you define n:
n = np.random.normal(50,4,i)
The mean is at 50 and the standard deviation is 4. So, you have a range between 46 and 54 which will contain only positive values.
add a comment |
You are always hitting this case:
if np.any( n > 0):
return n
This is happening because of the way you define n:
n = np.random.normal(50,4,i)
The mean is at 50 and the standard deviation is 4. So, you have a range between 46 and 54 which will contain only positive values.
add a comment |
You are always hitting this case:
if np.any( n > 0):
return n
This is happening because of the way you define n:
n = np.random.normal(50,4,i)
The mean is at 50 and the standard deviation is 4. So, you have a range between 46 and 54 which will contain only positive values.
You are always hitting this case:
if np.any( n > 0):
return n
This is happening because of the way you define n:
n = np.random.normal(50,4,i)
The mean is at 50 and the standard deviation is 4. So, you have a range between 46 and 54 which will contain only positive values.
edited Nov 20 '18 at 10:57
answered Nov 20 '18 at 10:41
Konstantin GrigorovKonstantin Grigorov
1068
1068
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53391084%2fdrawing-values-from-normal-distribution-to-be-used-in-monte-carlo-simulation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown