getItem with argument is column name
My column col1
is an Array.
I know that col1.getItem(2)
allows you to access the second argument of the column. Is there a function to access with argument as column col1.getItem(col2)
?
I can create a UDF but I would have to specify which type the array is (and it can be multiple type) so a generic way would be better and welcome !
The UDF I use:
def retrieveByIndexSingle[T : ClassTag](value:Seq[T] ,index:Int,offset:Int=0):T = value(index + offset)
def retrieveByIndexSingleDUDF = udf((value:Seq[Double] ,index:Int) => {
retrieveByIndexSingle[Double](value, index)
})
def retrieveByIndexSingleSUDF = udf((value:Seq[String] ,index:Int) => {
retrieveByIndexSingle[String](value, index)
})
scala apache-spark user-defined-functions
add a comment |
My column col1
is an Array.
I know that col1.getItem(2)
allows you to access the second argument of the column. Is there a function to access with argument as column col1.getItem(col2)
?
I can create a UDF but I would have to specify which type the array is (and it can be multiple type) so a generic way would be better and welcome !
The UDF I use:
def retrieveByIndexSingle[T : ClassTag](value:Seq[T] ,index:Int,offset:Int=0):T = value(index + offset)
def retrieveByIndexSingleDUDF = udf((value:Seq[Double] ,index:Int) => {
retrieveByIndexSingle[Double](value, index)
})
def retrieveByIndexSingleSUDF = udf((value:Seq[String] ,index:Int) => {
retrieveByIndexSingle[String](value, index)
})
scala apache-spark user-defined-functions
add a comment |
My column col1
is an Array.
I know that col1.getItem(2)
allows you to access the second argument of the column. Is there a function to access with argument as column col1.getItem(col2)
?
I can create a UDF but I would have to specify which type the array is (and it can be multiple type) so a generic way would be better and welcome !
The UDF I use:
def retrieveByIndexSingle[T : ClassTag](value:Seq[T] ,index:Int,offset:Int=0):T = value(index + offset)
def retrieveByIndexSingleDUDF = udf((value:Seq[Double] ,index:Int) => {
retrieveByIndexSingle[Double](value, index)
})
def retrieveByIndexSingleSUDF = udf((value:Seq[String] ,index:Int) => {
retrieveByIndexSingle[String](value, index)
})
scala apache-spark user-defined-functions
My column col1
is an Array.
I know that col1.getItem(2)
allows you to access the second argument of the column. Is there a function to access with argument as column col1.getItem(col2)
?
I can create a UDF but I would have to specify which type the array is (and it can be multiple type) so a generic way would be better and welcome !
The UDF I use:
def retrieveByIndexSingle[T : ClassTag](value:Seq[T] ,index:Int,offset:Int=0):T = value(index + offset)
def retrieveByIndexSingleDUDF = udf((value:Seq[Double] ,index:Int) => {
retrieveByIndexSingle[Double](value, index)
})
def retrieveByIndexSingleSUDF = udf((value:Seq[String] ,index:Int) => {
retrieveByIndexSingle[String](value, index)
})
scala apache-spark user-defined-functions
scala apache-spark user-defined-functions
asked Nov 19 '18 at 23:21
Guillaume GGuillaume G
768714
768714
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
It is possible to use SQL expression for example with expr
:
import org.apache.spark.sql.functions.expr
val df = Seq(
(Seq("a", "b", "c"), 0), (Seq("d", "e", "f"), 2)
).toDF("col1", "col2")
df.withColumn("col3", expr("col1[col2]")).show
+---------+----+----+
| col1|col2|col3|
+---------+----+----+
|[a, b, c]| 0| a|
|[d, e, f]| 2| f|
+---------+----+----+
or, in Spark 2.4 or later, element_at
function:
import org.apache.spark.sql.functions.element_at
df.withColumn("col3", element_at($"col1", $"col2" + 1)).show
+---------+----+----+
| col1|col2|col3|
+---------+----+----+
|[a, b, c]| 0| a|
|[d, e, f]| 2| f|
+---------+----+----+
Please note that at the moment (Spark 2.4) there is inconsistency between these two methods:
- SQL
indexing is 0-based.
element_at
indexing is 1-based.
thanks. The 1-based notation is terrible ...
– Guillaume G
Nov 20 '18 at 2:46
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53384054%2fgetitem-with-argument-is-column-name%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
It is possible to use SQL expression for example with expr
:
import org.apache.spark.sql.functions.expr
val df = Seq(
(Seq("a", "b", "c"), 0), (Seq("d", "e", "f"), 2)
).toDF("col1", "col2")
df.withColumn("col3", expr("col1[col2]")).show
+---------+----+----+
| col1|col2|col3|
+---------+----+----+
|[a, b, c]| 0| a|
|[d, e, f]| 2| f|
+---------+----+----+
or, in Spark 2.4 or later, element_at
function:
import org.apache.spark.sql.functions.element_at
df.withColumn("col3", element_at($"col1", $"col2" + 1)).show
+---------+----+----+
| col1|col2|col3|
+---------+----+----+
|[a, b, c]| 0| a|
|[d, e, f]| 2| f|
+---------+----+----+
Please note that at the moment (Spark 2.4) there is inconsistency between these two methods:
- SQL
indexing is 0-based.
element_at
indexing is 1-based.
thanks. The 1-based notation is terrible ...
– Guillaume G
Nov 20 '18 at 2:46
add a comment |
It is possible to use SQL expression for example with expr
:
import org.apache.spark.sql.functions.expr
val df = Seq(
(Seq("a", "b", "c"), 0), (Seq("d", "e", "f"), 2)
).toDF("col1", "col2")
df.withColumn("col3", expr("col1[col2]")).show
+---------+----+----+
| col1|col2|col3|
+---------+----+----+
|[a, b, c]| 0| a|
|[d, e, f]| 2| f|
+---------+----+----+
or, in Spark 2.4 or later, element_at
function:
import org.apache.spark.sql.functions.element_at
df.withColumn("col3", element_at($"col1", $"col2" + 1)).show
+---------+----+----+
| col1|col2|col3|
+---------+----+----+
|[a, b, c]| 0| a|
|[d, e, f]| 2| f|
+---------+----+----+
Please note that at the moment (Spark 2.4) there is inconsistency between these two methods:
- SQL
indexing is 0-based.
element_at
indexing is 1-based.
thanks. The 1-based notation is terrible ...
– Guillaume G
Nov 20 '18 at 2:46
add a comment |
It is possible to use SQL expression for example with expr
:
import org.apache.spark.sql.functions.expr
val df = Seq(
(Seq("a", "b", "c"), 0), (Seq("d", "e", "f"), 2)
).toDF("col1", "col2")
df.withColumn("col3", expr("col1[col2]")).show
+---------+----+----+
| col1|col2|col3|
+---------+----+----+
|[a, b, c]| 0| a|
|[d, e, f]| 2| f|
+---------+----+----+
or, in Spark 2.4 or later, element_at
function:
import org.apache.spark.sql.functions.element_at
df.withColumn("col3", element_at($"col1", $"col2" + 1)).show
+---------+----+----+
| col1|col2|col3|
+---------+----+----+
|[a, b, c]| 0| a|
|[d, e, f]| 2| f|
+---------+----+----+
Please note that at the moment (Spark 2.4) there is inconsistency between these two methods:
- SQL
indexing is 0-based.
element_at
indexing is 1-based.
It is possible to use SQL expression for example with expr
:
import org.apache.spark.sql.functions.expr
val df = Seq(
(Seq("a", "b", "c"), 0), (Seq("d", "e", "f"), 2)
).toDF("col1", "col2")
df.withColumn("col3", expr("col1[col2]")).show
+---------+----+----+
| col1|col2|col3|
+---------+----+----+
|[a, b, c]| 0| a|
|[d, e, f]| 2| f|
+---------+----+----+
or, in Spark 2.4 or later, element_at
function:
import org.apache.spark.sql.functions.element_at
df.withColumn("col3", element_at($"col1", $"col2" + 1)).show
+---------+----+----+
| col1|col2|col3|
+---------+----+----+
|[a, b, c]| 0| a|
|[d, e, f]| 2| f|
+---------+----+----+
Please note that at the moment (Spark 2.4) there is inconsistency between these two methods:
- SQL
indexing is 0-based.
element_at
indexing is 1-based.
edited Nov 20 '18 at 1:10
answered Nov 20 '18 at 1:05
user10465355user10465355
1,8732417
1,8732417
thanks. The 1-based notation is terrible ...
– Guillaume G
Nov 20 '18 at 2:46
add a comment |
thanks. The 1-based notation is terrible ...
– Guillaume G
Nov 20 '18 at 2:46
thanks. The 1-based notation is terrible ...
– Guillaume G
Nov 20 '18 at 2:46
thanks. The 1-based notation is terrible ...
– Guillaume G
Nov 20 '18 at 2:46
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53384054%2fgetitem-with-argument-is-column-name%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown