Hamiltonian system









A Hamiltonian system is a dynamical system governed by Hamilton's equations. In physics, this dynamical system describes the evolution of a physical system such as a planetary system or an electron in an electromagnetic field. These systems can be studied in both Hamiltonian mechanics and dynamical systems theory.




Contents






  • 1 Overview


  • 2 Time independent Hamiltonian system


    • 2.1 Example




  • 3 Symplectic structure


  • 4 Examples


  • 5 See also


  • 6 References


  • 7 Further reading


  • 8 External links





Overview


Informally, a Hamiltonian system is a mathematical formalism developed by Hamilton to describe the evolution equations of a physical system. The advantage of this description is that it gives important insight about the dynamics, even if the initial value problem cannot be solved analytically. One example is the planetary movement of three bodies: even if there is no simple solution to the general problem, Poincaré showed for the first time that it exhibits deterministic chaos.


Formally, a Hamiltonian system is a dynamical system completely described by the scalar function H(q,p,t){displaystyle H({boldsymbol {q}},{boldsymbol {p}},t)}H({boldsymbol  {q}},{boldsymbol  {p}},t), the Hamiltonian.[1] The state of the system, r{displaystyle {boldsymbol {r}}}{boldsymbol {r}}, is described by the generalized coordinates 'momentum' p{displaystyle {boldsymbol {p}}}{boldsymbol {p}} and 'position' q{displaystyle {boldsymbol {q}}}{boldsymbol  {q}} where both p{displaystyle {boldsymbol {p}}}{boldsymbol {p}} and q{displaystyle {boldsymbol {q}}}{boldsymbol  {q}} are vectors with the same dimension N. So, the system is completely described by the 2N dimensional vector


r=(q,p){displaystyle {boldsymbol {r}}=({boldsymbol {q}},{boldsymbol {p}})}{boldsymbol  {r}}=({boldsymbol  {q}},{boldsymbol  {p}})

and the evolution equation is given by the Hamilton's equations:



dpdt=−H∂qdqdt=+∂H∂p{displaystyle {begin{aligned}&{frac {d{boldsymbol {p}}}{dt}}=-{frac {partial H}{partial {boldsymbol {q}}}}\&{frac {d{boldsymbol {q}}}{dt}}=+{frac {partial H}{partial {boldsymbol {p}}}}end{aligned}}}{begin{aligned}&{frac  {d{boldsymbol  {p}}}{dt}}=-{frac  {partial H}{partial {boldsymbol  {q}}}}\&{frac  {d{boldsymbol  {q}}}{dt}}=+{frac  {partial H}{partial {boldsymbol  {p}}}}end{aligned}}.

The trajectory r(t){displaystyle {boldsymbol {r}}(t)}{boldsymbol  {r}}(t) is the solution of the initial value problem defined by the Hamilton's equations and the initial condition r(0)=r0∈R2N{displaystyle {boldsymbol {r}}(0)={boldsymbol {r}}_{0}in mathbb {R} ^{2N}}{boldsymbol  {r}}(0)={boldsymbol  {r}}_{0}in {mathbb  {R}}^{{2N}}.



Time independent Hamiltonian system


If the Hamiltonian is not explicitly time dependent, i.e. if H(q,p,t)=H(q,p){displaystyle H({boldsymbol {q}},{boldsymbol {p}},t)=H({boldsymbol {q}},{boldsymbol {p}})}H({boldsymbol  {q}},{boldsymbol  {p}},t)=H({boldsymbol  {q}},{boldsymbol  {p}}), then the Hamiltonian does not vary with time at all:[1]




derivation


dHdt=∂H∂p⋅dpdt+∂H∂q⋅dqdt+∂H∂t{displaystyle {frac {dH}{dt}}={frac {partial H}{partial {boldsymbol {p}}}}cdot {frac {d{boldsymbol {p}}}{dt}}+{frac {partial H}{partial {boldsymbol {q}}}}cdot {frac {d{boldsymbol {q}}}{dt}}+{frac {partial H}{partial t}}}{frac  {dH}{dt}}={frac  {partial H}{partial {boldsymbol  {p}}}}cdot {frac  {d{boldsymbol  {p}}}{dt}}+{frac  {partial H}{partial {boldsymbol  {q}}}}cdot {frac  {d{boldsymbol  {q}}}{dt}}+{frac  {partial H}{partial t}}

dHdt=∂H∂p⋅(−H∂q)+∂H∂q⋅H∂p+0=0{displaystyle {frac {dH}{dt}}={frac {partial H}{partial {boldsymbol {p}}}}cdot left(-{frac {partial H}{partial {boldsymbol {q}}}}right)+{frac {partial H}{partial {boldsymbol {q}}}}cdot {frac {partial H}{partial {boldsymbol {p}}}}+0=0}{frac  {dH}{dt}}={frac  {partial H}{partial {boldsymbol  {p}}}}cdot left(-{frac  {partial H}{partial {boldsymbol  {q}}}}right)+{frac  {partial H}{partial {boldsymbol  {q}}}}cdot {frac  {partial H}{partial {boldsymbol  {p}}}}+0=0





and thus the Hamiltonian is a constant of motion, whose constant equals the total energy of the system, H=E{displaystyle H=E}H=E. Examples of such systems are the pendulum, the harmonic oscillator or dynamical billiards.



Example



One example of time independent Hamiltonian system is the harmonic oscillator. Consider the system defined by the coordinates p=p{displaystyle {boldsymbol {p}}=p}{boldsymbol  {p}}=p and q=x{displaystyle {boldsymbol {q}}=x}{boldsymbol  {q}}=x whose Hamiltonian is given by


H=p22m+12kx2{displaystyle H={frac {p^{2}}{2m}}+{frac {1}{2}}kx^{2}}H={frac  {p^{2}}{2m}}+{frac  {1}{2}}kx^{2}


The Hamiltonian of this system does not depend on time and thus the energy of the system is conserved.



Symplectic structure


One important property of a Hamiltonian dynamical system is that it has a symplectic structure.[1] Writing


rH(r)=[∂qH(q,p)∂pH(q,p)]{displaystyle nabla _{boldsymbol {r}}H({boldsymbol {r}})={begin{bmatrix}partial _{boldsymbol {q}}H({boldsymbol {q}},{boldsymbol {p}})\partial _{boldsymbol {p}}H({boldsymbol {q}},{boldsymbol {p}})\end{bmatrix}}}nabla _{{{boldsymbol  {r}}}}H({boldsymbol  {r}})={begin{bmatrix}partial _{{boldsymbol  {q}}}H({boldsymbol  {q}},{boldsymbol  {p}})\partial _{{boldsymbol  {p}}}H({boldsymbol  {q}},{boldsymbol  {p}})\end{bmatrix}}


the evolution equation of the dynamical system can be written as


drdt=SN⋅rH(r){displaystyle {frac {d{boldsymbol {r}}}{dt}}=S_{N}cdot nabla _{boldsymbol {r}}H({boldsymbol {r}})}{frac  {d{boldsymbol  {r}}}{dt}}=S_{N}cdot nabla _{{{boldsymbol  {r}}}}H({boldsymbol  {r}})

where


SN=[0IN−IN0]{displaystyle S_{N}={begin{bmatrix}0&I_{N}\-I_{N}&0\end{bmatrix}}}S_{N}={begin{bmatrix}0&I_{N}\-I_{N}&0\end{bmatrix}}

and IN the N×N identity matrix.


One important consequence of this property is that an infinitesimal phase-space volume is preserved.[1] A corollary of this is Liouville's theorem, which states that on a Hamiltonian system, the phase-space volume of a closed surface is preserved under time evolution.[1]


ddt∫Stdr=∫Stdrdt⋅dS=∫StF⋅dS=∫St∇Fdr=0{displaystyle {frac {d}{dt}}int _{S_{t}}d{boldsymbol {r}}=int _{S_{t}}{frac {d{boldsymbol {r}}}{dt}}cdot d{boldsymbol {S}}=int _{S_{t}}{boldsymbol {F}}cdot d{boldsymbol {S}}=int _{S_{t}}nabla cdot {boldsymbol {F}}d{boldsymbol {r}}=0}{frac  {d}{dt}}int _{{S_{t}}}d{boldsymbol  {r}}=int _{{S_{t}}}{frac  {d{boldsymbol  {r}}}{dt}}cdot d{boldsymbol  {S}}=int _{{S_{t}}}{boldsymbol  {F}}cdot d{boldsymbol  {S}}=int _{{S_{t}}}nabla cdot {boldsymbol  {F}}d{boldsymbol  {r}}=0

where the third equality comes from the divergence theorem.



Examples



  • Dynamical billiards


  • Planetary systems, more specifically, the n-body problem.

  • Canonical general relativity



See also



  • Action-angle coordinates

  • Liouville's theorem

  • Integrable system

  • Kolmogorov–Arnold–Moser theorem



References





  1. ^ abcde Ott, Edward (1994). Chaos in Dynamical Systems. Cambridge University Press..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}




Further reading



  • Almeida, A. M. (1992). Hamiltonian systems: Chaos and quantization. Cambridge monographs on mathematical physics. Cambridge (u.a.: Cambridge Univ. Press)

  • Audin, M., (2008). Hamiltonian systems and their integrability. Providence, R.I: American Mathematical Society,
    ISBN 978-0-8218-4413-7

  • Dickey, L. A. (2003). Soliton equations and Hamiltonian systems. Advanced series in mathematical physics, v. 26. River Edge, NJ: World Scientific.

  • Treschev, D., & Zubelevich, O. (2010). Introduction to the perturbation theory of Hamiltonian systems. Heidelberg: Springer


  • Zaslavsky, G. M. (2007). The physics of chaos in Hamiltonian systems. London: Imperial College Press.



External links



  • James Meiss (ed.). "Hamiltonian Systems". Scholarpedia.



這個網誌中的熱門文章

Tangent Lines Diagram Along Smooth Curve

Yusuf al-Mu'taman ibn Hud

Zucchini