Filling NaN in a DataFrame Column with Key from a Dictionary by looking up values from a different column
I have a dataset that looks like:
> Country Code
> 'Bolivia' NaN
> 'Bolivia, The Republic of' NaN
And I also have a dictionary
> CountryCode = {'BOL':['Bolivia','Bolivia, The Republic of']}
How do I go on about fillna in the dataframe with the respective Key if one of the values is in the dictionary?
The desired output is
> Country Code
> 'Bolivia' 'BOL'
> 'Bolivia, The Republic of' 'BOL'
Thanks for your help!
python pandas dictionary
add a comment |
I have a dataset that looks like:
> Country Code
> 'Bolivia' NaN
> 'Bolivia, The Republic of' NaN
And I also have a dictionary
> CountryCode = {'BOL':['Bolivia','Bolivia, The Republic of']}
How do I go on about fillna in the dataframe with the respective Key if one of the values is in the dictionary?
The desired output is
> Country Code
> 'Bolivia' 'BOL'
> 'Bolivia, The Republic of' 'BOL'
Thanks for your help!
python pandas dictionary
where is your code ?
– n1tk
Nov 23 '18 at 5:27
add a comment |
I have a dataset that looks like:
> Country Code
> 'Bolivia' NaN
> 'Bolivia, The Republic of' NaN
And I also have a dictionary
> CountryCode = {'BOL':['Bolivia','Bolivia, The Republic of']}
How do I go on about fillna in the dataframe with the respective Key if one of the values is in the dictionary?
The desired output is
> Country Code
> 'Bolivia' 'BOL'
> 'Bolivia, The Republic of' 'BOL'
Thanks for your help!
python pandas dictionary
I have a dataset that looks like:
> Country Code
> 'Bolivia' NaN
> 'Bolivia, The Republic of' NaN
And I also have a dictionary
> CountryCode = {'BOL':['Bolivia','Bolivia, The Republic of']}
How do I go on about fillna in the dataframe with the respective Key if one of the values is in the dictionary?
The desired output is
> Country Code
> 'Bolivia' 'BOL'
> 'Bolivia, The Republic of' 'BOL'
Thanks for your help!
python pandas dictionary
python pandas dictionary
asked Nov 23 '18 at 5:25
Yasir YousufYasir Yousuf
235
235
where is your code ?
– n1tk
Nov 23 '18 at 5:27
add a comment |
where is your code ?
– n1tk
Nov 23 '18 at 5:27
where is your code ?
– n1tk
Nov 23 '18 at 5:27
where is your code ?
– n1tk
Nov 23 '18 at 5:27
add a comment |
3 Answers
3
active
oldest
votes
Create reverse dictionary of CountryCode
and map
it with Country
column:
new_countrycode = {v:key for key,value in CountryCode.items() for v in value}
df['Code'] = df['Country'].map(new_countrycode)
print(df)
Country Code
0 Bolivia BOL
1 Bolivia, The Republic of BOL
print(new_countrycode)
{'Bolivia': 'BOL', 'Bolivia, The Republic of': 'BOL'}
add a comment |
Using .apply()
df["Code"] = df.Country.apply(lambda x: ''.join(i for i, j in CountryCode.items() if x in j))
Output:
Country Code
0 Bolivia BOL
1 Bolivia, The Republic of BOL
add a comment |
df=pd.DataFrame({'Country':['Bolivia','Bolivia, The Republic of'],'code':[None,None]})
Create Dataframe from dictionary of key-value code
df_keyval=pd.DataFrame({'CountryCode':{'BOL':['Bolivia','Bolivia, The Republic of']}}).reset_index()
Match the Country and get the corresponding Key:
for idx,rows in df.iterrows():
if rows['Country'] in df_keyval.CountryCode[0]:
df['code']=df_keyval.index[0]
Output:
Country code
0 Bolivia BOL
1 Bolivia, The Republic of BOL
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53441047%2ffilling-nan-in-a-dataframe-column-with-key-from-a-dictionary-by-looking-up-value%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
Create reverse dictionary of CountryCode
and map
it with Country
column:
new_countrycode = {v:key for key,value in CountryCode.items() for v in value}
df['Code'] = df['Country'].map(new_countrycode)
print(df)
Country Code
0 Bolivia BOL
1 Bolivia, The Republic of BOL
print(new_countrycode)
{'Bolivia': 'BOL', 'Bolivia, The Republic of': 'BOL'}
add a comment |
Create reverse dictionary of CountryCode
and map
it with Country
column:
new_countrycode = {v:key for key,value in CountryCode.items() for v in value}
df['Code'] = df['Country'].map(new_countrycode)
print(df)
Country Code
0 Bolivia BOL
1 Bolivia, The Republic of BOL
print(new_countrycode)
{'Bolivia': 'BOL', 'Bolivia, The Republic of': 'BOL'}
add a comment |
Create reverse dictionary of CountryCode
and map
it with Country
column:
new_countrycode = {v:key for key,value in CountryCode.items() for v in value}
df['Code'] = df['Country'].map(new_countrycode)
print(df)
Country Code
0 Bolivia BOL
1 Bolivia, The Republic of BOL
print(new_countrycode)
{'Bolivia': 'BOL', 'Bolivia, The Republic of': 'BOL'}
Create reverse dictionary of CountryCode
and map
it with Country
column:
new_countrycode = {v:key for key,value in CountryCode.items() for v in value}
df['Code'] = df['Country'].map(new_countrycode)
print(df)
Country Code
0 Bolivia BOL
1 Bolivia, The Republic of BOL
print(new_countrycode)
{'Bolivia': 'BOL', 'Bolivia, The Republic of': 'BOL'}
answered Nov 23 '18 at 5:42
Sandeep KadapaSandeep Kadapa
7,398831
7,398831
add a comment |
add a comment |
Using .apply()
df["Code"] = df.Country.apply(lambda x: ''.join(i for i, j in CountryCode.items() if x in j))
Output:
Country Code
0 Bolivia BOL
1 Bolivia, The Republic of BOL
add a comment |
Using .apply()
df["Code"] = df.Country.apply(lambda x: ''.join(i for i, j in CountryCode.items() if x in j))
Output:
Country Code
0 Bolivia BOL
1 Bolivia, The Republic of BOL
add a comment |
Using .apply()
df["Code"] = df.Country.apply(lambda x: ''.join(i for i, j in CountryCode.items() if x in j))
Output:
Country Code
0 Bolivia BOL
1 Bolivia, The Republic of BOL
Using .apply()
df["Code"] = df.Country.apply(lambda x: ''.join(i for i, j in CountryCode.items() if x in j))
Output:
Country Code
0 Bolivia BOL
1 Bolivia, The Republic of BOL
answered Nov 23 '18 at 6:05
Srce CdeSrce Cde
1,184612
1,184612
add a comment |
add a comment |
df=pd.DataFrame({'Country':['Bolivia','Bolivia, The Republic of'],'code':[None,None]})
Create Dataframe from dictionary of key-value code
df_keyval=pd.DataFrame({'CountryCode':{'BOL':['Bolivia','Bolivia, The Republic of']}}).reset_index()
Match the Country and get the corresponding Key:
for idx,rows in df.iterrows():
if rows['Country'] in df_keyval.CountryCode[0]:
df['code']=df_keyval.index[0]
Output:
Country code
0 Bolivia BOL
1 Bolivia, The Republic of BOL
add a comment |
df=pd.DataFrame({'Country':['Bolivia','Bolivia, The Republic of'],'code':[None,None]})
Create Dataframe from dictionary of key-value code
df_keyval=pd.DataFrame({'CountryCode':{'BOL':['Bolivia','Bolivia, The Republic of']}}).reset_index()
Match the Country and get the corresponding Key:
for idx,rows in df.iterrows():
if rows['Country'] in df_keyval.CountryCode[0]:
df['code']=df_keyval.index[0]
Output:
Country code
0 Bolivia BOL
1 Bolivia, The Republic of BOL
add a comment |
df=pd.DataFrame({'Country':['Bolivia','Bolivia, The Republic of'],'code':[None,None]})
Create Dataframe from dictionary of key-value code
df_keyval=pd.DataFrame({'CountryCode':{'BOL':['Bolivia','Bolivia, The Republic of']}}).reset_index()
Match the Country and get the corresponding Key:
for idx,rows in df.iterrows():
if rows['Country'] in df_keyval.CountryCode[0]:
df['code']=df_keyval.index[0]
Output:
Country code
0 Bolivia BOL
1 Bolivia, The Republic of BOL
df=pd.DataFrame({'Country':['Bolivia','Bolivia, The Republic of'],'code':[None,None]})
Create Dataframe from dictionary of key-value code
df_keyval=pd.DataFrame({'CountryCode':{'BOL':['Bolivia','Bolivia, The Republic of']}}).reset_index()
Match the Country and get the corresponding Key:
for idx,rows in df.iterrows():
if rows['Country'] in df_keyval.CountryCode[0]:
df['code']=df_keyval.index[0]
Output:
Country code
0 Bolivia BOL
1 Bolivia, The Republic of BOL
answered Nov 23 '18 at 5:42
min2bromin2bro
2,14611432
2,14611432
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53441047%2ffilling-nan-in-a-dataframe-column-with-key-from-a-dictionary-by-looking-up-value%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
where is your code ?
– n1tk
Nov 23 '18 at 5:27