Filling NaN in a DataFrame Column with Key from a Dictionary by looking up values from a different column












0















I have a dataset that looks like:



> Country                     Code
> 'Bolivia' NaN
> 'Bolivia, The Republic of' NaN


And I also have a dictionary



> CountryCode = {'BOL':['Bolivia','Bolivia, The Republic of']}


How do I go on about fillna in the dataframe with the respective Key if one of the values is in the dictionary?



The desired output is



> Country                     Code
> 'Bolivia' 'BOL'
> 'Bolivia, The Republic of' 'BOL'


Thanks for your help!










share|improve this question























  • where is your code ?

    – n1tk
    Nov 23 '18 at 5:27
















0















I have a dataset that looks like:



> Country                     Code
> 'Bolivia' NaN
> 'Bolivia, The Republic of' NaN


And I also have a dictionary



> CountryCode = {'BOL':['Bolivia','Bolivia, The Republic of']}


How do I go on about fillna in the dataframe with the respective Key if one of the values is in the dictionary?



The desired output is



> Country                     Code
> 'Bolivia' 'BOL'
> 'Bolivia, The Republic of' 'BOL'


Thanks for your help!










share|improve this question























  • where is your code ?

    – n1tk
    Nov 23 '18 at 5:27














0












0








0








I have a dataset that looks like:



> Country                     Code
> 'Bolivia' NaN
> 'Bolivia, The Republic of' NaN


And I also have a dictionary



> CountryCode = {'BOL':['Bolivia','Bolivia, The Republic of']}


How do I go on about fillna in the dataframe with the respective Key if one of the values is in the dictionary?



The desired output is



> Country                     Code
> 'Bolivia' 'BOL'
> 'Bolivia, The Republic of' 'BOL'


Thanks for your help!










share|improve this question














I have a dataset that looks like:



> Country                     Code
> 'Bolivia' NaN
> 'Bolivia, The Republic of' NaN


And I also have a dictionary



> CountryCode = {'BOL':['Bolivia','Bolivia, The Republic of']}


How do I go on about fillna in the dataframe with the respective Key if one of the values is in the dictionary?



The desired output is



> Country                     Code
> 'Bolivia' 'BOL'
> 'Bolivia, The Republic of' 'BOL'


Thanks for your help!







python pandas dictionary






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked Nov 23 '18 at 5:25









Yasir YousufYasir Yousuf

235




235













  • where is your code ?

    – n1tk
    Nov 23 '18 at 5:27



















  • where is your code ?

    – n1tk
    Nov 23 '18 at 5:27

















where is your code ?

– n1tk
Nov 23 '18 at 5:27





where is your code ?

– n1tk
Nov 23 '18 at 5:27












3 Answers
3






active

oldest

votes


















1














Create reverse dictionary of CountryCode and map it with Country column:



new_countrycode = {v:key for key,value in CountryCode.items() for v in value}
df['Code'] = df['Country'].map(new_countrycode)

print(df)
Country Code
0 Bolivia BOL
1 Bolivia, The Republic of BOL

print(new_countrycode)
{'Bolivia': 'BOL', 'Bolivia, The Republic of': 'BOL'}





share|improve this answer































    1














    Using .apply()



    df["Code"] = df.Country.apply(lambda x: ''.join(i for i, j in CountryCode.items() if x in j))


    Output:



                        Country Code
    0 Bolivia BOL
    1 Bolivia, The Republic of BOL





    share|improve this answer































      0














      df=pd.DataFrame({'Country':['Bolivia','Bolivia, The Republic of'],'code':[None,None]})


      Create Dataframe from dictionary of key-value code



      df_keyval=pd.DataFrame({'CountryCode':{'BOL':['Bolivia','Bolivia, The Republic of']}}).reset_index()


      Match the Country and get the corresponding Key:



      for idx,rows in df.iterrows():
      if rows['Country'] in df_keyval.CountryCode[0]:
      df['code']=df_keyval.index[0]


      Output:



          Country                    code
      0 Bolivia BOL
      1 Bolivia, The Republic of BOL





      share|improve this answer























        Your Answer






        StackExchange.ifUsing("editor", function () {
        StackExchange.using("externalEditor", function () {
        StackExchange.using("snippets", function () {
        StackExchange.snippets.init();
        });
        });
        }, "code-snippets");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "1"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53441047%2ffilling-nan-in-a-dataframe-column-with-key-from-a-dictionary-by-looking-up-value%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        1














        Create reverse dictionary of CountryCode and map it with Country column:



        new_countrycode = {v:key for key,value in CountryCode.items() for v in value}
        df['Code'] = df['Country'].map(new_countrycode)

        print(df)
        Country Code
        0 Bolivia BOL
        1 Bolivia, The Republic of BOL

        print(new_countrycode)
        {'Bolivia': 'BOL', 'Bolivia, The Republic of': 'BOL'}





        share|improve this answer




























          1














          Create reverse dictionary of CountryCode and map it with Country column:



          new_countrycode = {v:key for key,value in CountryCode.items() for v in value}
          df['Code'] = df['Country'].map(new_countrycode)

          print(df)
          Country Code
          0 Bolivia BOL
          1 Bolivia, The Republic of BOL

          print(new_countrycode)
          {'Bolivia': 'BOL', 'Bolivia, The Republic of': 'BOL'}





          share|improve this answer


























            1












            1








            1







            Create reverse dictionary of CountryCode and map it with Country column:



            new_countrycode = {v:key for key,value in CountryCode.items() for v in value}
            df['Code'] = df['Country'].map(new_countrycode)

            print(df)
            Country Code
            0 Bolivia BOL
            1 Bolivia, The Republic of BOL

            print(new_countrycode)
            {'Bolivia': 'BOL', 'Bolivia, The Republic of': 'BOL'}





            share|improve this answer













            Create reverse dictionary of CountryCode and map it with Country column:



            new_countrycode = {v:key for key,value in CountryCode.items() for v in value}
            df['Code'] = df['Country'].map(new_countrycode)

            print(df)
            Country Code
            0 Bolivia BOL
            1 Bolivia, The Republic of BOL

            print(new_countrycode)
            {'Bolivia': 'BOL', 'Bolivia, The Republic of': 'BOL'}






            share|improve this answer












            share|improve this answer



            share|improve this answer










            answered Nov 23 '18 at 5:42









            Sandeep KadapaSandeep Kadapa

            7,398831




            7,398831

























                1














                Using .apply()



                df["Code"] = df.Country.apply(lambda x: ''.join(i for i, j in CountryCode.items() if x in j))


                Output:



                                    Country Code
                0 Bolivia BOL
                1 Bolivia, The Republic of BOL





                share|improve this answer




























                  1














                  Using .apply()



                  df["Code"] = df.Country.apply(lambda x: ''.join(i for i, j in CountryCode.items() if x in j))


                  Output:



                                      Country Code
                  0 Bolivia BOL
                  1 Bolivia, The Republic of BOL





                  share|improve this answer


























                    1












                    1








                    1







                    Using .apply()



                    df["Code"] = df.Country.apply(lambda x: ''.join(i for i, j in CountryCode.items() if x in j))


                    Output:



                                        Country Code
                    0 Bolivia BOL
                    1 Bolivia, The Republic of BOL





                    share|improve this answer













                    Using .apply()



                    df["Code"] = df.Country.apply(lambda x: ''.join(i for i, j in CountryCode.items() if x in j))


                    Output:



                                        Country Code
                    0 Bolivia BOL
                    1 Bolivia, The Republic of BOL






                    share|improve this answer












                    share|improve this answer



                    share|improve this answer










                    answered Nov 23 '18 at 6:05









                    Srce CdeSrce Cde

                    1,184612




                    1,184612























                        0














                        df=pd.DataFrame({'Country':['Bolivia','Bolivia, The Republic of'],'code':[None,None]})


                        Create Dataframe from dictionary of key-value code



                        df_keyval=pd.DataFrame({'CountryCode':{'BOL':['Bolivia','Bolivia, The Republic of']}}).reset_index()


                        Match the Country and get the corresponding Key:



                        for idx,rows in df.iterrows():
                        if rows['Country'] in df_keyval.CountryCode[0]:
                        df['code']=df_keyval.index[0]


                        Output:



                            Country                    code
                        0 Bolivia BOL
                        1 Bolivia, The Republic of BOL





                        share|improve this answer




























                          0














                          df=pd.DataFrame({'Country':['Bolivia','Bolivia, The Republic of'],'code':[None,None]})


                          Create Dataframe from dictionary of key-value code



                          df_keyval=pd.DataFrame({'CountryCode':{'BOL':['Bolivia','Bolivia, The Republic of']}}).reset_index()


                          Match the Country and get the corresponding Key:



                          for idx,rows in df.iterrows():
                          if rows['Country'] in df_keyval.CountryCode[0]:
                          df['code']=df_keyval.index[0]


                          Output:



                              Country                    code
                          0 Bolivia BOL
                          1 Bolivia, The Republic of BOL





                          share|improve this answer


























                            0












                            0








                            0







                            df=pd.DataFrame({'Country':['Bolivia','Bolivia, The Republic of'],'code':[None,None]})


                            Create Dataframe from dictionary of key-value code



                            df_keyval=pd.DataFrame({'CountryCode':{'BOL':['Bolivia','Bolivia, The Republic of']}}).reset_index()


                            Match the Country and get the corresponding Key:



                            for idx,rows in df.iterrows():
                            if rows['Country'] in df_keyval.CountryCode[0]:
                            df['code']=df_keyval.index[0]


                            Output:



                                Country                    code
                            0 Bolivia BOL
                            1 Bolivia, The Republic of BOL





                            share|improve this answer













                            df=pd.DataFrame({'Country':['Bolivia','Bolivia, The Republic of'],'code':[None,None]})


                            Create Dataframe from dictionary of key-value code



                            df_keyval=pd.DataFrame({'CountryCode':{'BOL':['Bolivia','Bolivia, The Republic of']}}).reset_index()


                            Match the Country and get the corresponding Key:



                            for idx,rows in df.iterrows():
                            if rows['Country'] in df_keyval.CountryCode[0]:
                            df['code']=df_keyval.index[0]


                            Output:



                                Country                    code
                            0 Bolivia BOL
                            1 Bolivia, The Republic of BOL






                            share|improve this answer












                            share|improve this answer



                            share|improve this answer










                            answered Nov 23 '18 at 5:42









                            min2bromin2bro

                            2,14611432




                            2,14611432






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Stack Overflow!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53441047%2ffilling-nan-in-a-dataframe-column-with-key-from-a-dictionary-by-looking-up-value%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                這個網誌中的熱門文章

                                Xamarin.form Move up view when keyboard appear

                                Post-Redirect-Get with Spring WebFlux and Thymeleaf

                                Anylogic : not able to use stopDelay()