Unable to run parameter tuning for XGBoost regression model using caret












0















I am trying to build a regression model using the Boston Housing data using the caret package. The code is as follows



library(tidyverse)
library(ggplot2)
library(lubridate)
library(broom)
library(caret)
library(xgboost)

#list.files()

options(scipen = 999)

library(MASS)

data_model <- Boston
data_model <- as.data.frame(data_model)

# based on this link https://stackoverflow.com/questions/51762536/r-xgboost-on-caret-attempts-to-perform-classification-instead-of-regression
data_model$medv <- as.double(data_model$medv)
data_model$zn <- as.double(data_model$zn)
xgb_grid_1 = expand.grid(
nrounds = 1000,
max_depth = c(2, 4, 6, 8, 10),
eta=c(0.5, 0.1, 0.07),
gamma = 0.01,
colsample_bytree=0.5,
min_child_weight=1,
subsample=0.5
)

xgb_trcontrol_1 = trainControl(
method = "cv",
number = 5,
allowParallel = TRUE
)


xgb_train_1 = train(
x = data_model %>% dplyr::select(-medv) %>% as.matrix(),
y = as.matrix(data_model$medv),
trControl = xgb_trcontrol_1,
tuneGrid = xgb_grid_1,
method = "xgbTree",
metric = 'RMSE'
)

sessionInfo()


But when I run the train() function I get the error Error: Metric RMSE not applicable for classification models. Then I tried to change variables that were integers to double as suggested by this link. I still seem to get the same error. Am I missing out on an extra parameter that should take care of this? Thank You in advance! I have also included my session information below in case there is version conflict that I am not aware of.



R version 3.4.0 (2017-04-21)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS 10.14

Matrix products: default
BLAS: /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] MASS_7.3-47 bindrcpp_0.2.2 xgboost_0.71.2 caret_6.0-81 lattice_0.20-35 broom_0.4.2 lubridate_1.6.0 dplyr_0.7.8 purrr_0.2.3
[10] readr_1.1.1 tidyr_0.7.2 tibble_1.4.2 ggplot2_2.2.1.9000 tidyverse_1.1.1

loaded via a namespace (and not attached):
[1] Rcpp_1.0.0 class_7.3-14 utf8_1.1.3 assertthat_0.2.0 ipred_0.9-6 psych_1.7.5 foreach_1.4.3 R6_2.2.2
[9] cellranger_1.1.0 plyr_1.8.4 stats4_3.4.0 httr_1.3.1 pillar_1.2.1 rlang_0.3.0.1 lazyeval_0.2.1 readxl_1.0.0
[17] rstudioapi_0.7 data.table_1.10.4 rpart_4.1-11 Matrix_1.2-9 splines_3.4.0 gower_0.1.2 stringr_1.3.0 foreign_0.8-67
[25] munsell_0.4.3 compiler_3.4.0 modelr_0.1.1 pkgconfig_2.0.1 mnormt_1.5-5 nnet_7.3-12 tidyselect_0.2.5 prodlim_2018.04.18
[33] codetools_0.2-15 crayon_1.3.4 withr_2.1.2 recipes_0.1.4 ModelMetrics_1.1.0 grid_3.4.0 nlme_3.1-131 jsonlite_1.5
[41] gtable_0.2.0 magrittr_1.5 waterfalls_0.1.2 scales_0.5.0.9000 cli_1.0.0 stringi_1.1.7 reshape2_1.4.3 timeDate_3012.100
[49] xml2_1.2.0 generics_0.0.1 lava_1.6.1 iterators_1.0.8 tools_3.4.0 forcats_0.2.0 glue_1.3.0 hms_0.3
[57] parallel_3.4.0 survival_2.41-3 colorspace_1.3-2 xgboostExplainer_0.1 rvest_0.3.2 bindr_0.1.1 haven_1.1.0









share|improve this question

























  • It is the Boston data from MASS

    – adhok
    Nov 23 '18 at 5:38











  • Like the comment in the link you have mentioned says; change the target variable y = as.matrix(data_model$medv) to double, i.e., y = as.double(data_model$medv)

    – discipulus
    Nov 23 '18 at 5:44


















0















I am trying to build a regression model using the Boston Housing data using the caret package. The code is as follows



library(tidyverse)
library(ggplot2)
library(lubridate)
library(broom)
library(caret)
library(xgboost)

#list.files()

options(scipen = 999)

library(MASS)

data_model <- Boston
data_model <- as.data.frame(data_model)

# based on this link https://stackoverflow.com/questions/51762536/r-xgboost-on-caret-attempts-to-perform-classification-instead-of-regression
data_model$medv <- as.double(data_model$medv)
data_model$zn <- as.double(data_model$zn)
xgb_grid_1 = expand.grid(
nrounds = 1000,
max_depth = c(2, 4, 6, 8, 10),
eta=c(0.5, 0.1, 0.07),
gamma = 0.01,
colsample_bytree=0.5,
min_child_weight=1,
subsample=0.5
)

xgb_trcontrol_1 = trainControl(
method = "cv",
number = 5,
allowParallel = TRUE
)


xgb_train_1 = train(
x = data_model %>% dplyr::select(-medv) %>% as.matrix(),
y = as.matrix(data_model$medv),
trControl = xgb_trcontrol_1,
tuneGrid = xgb_grid_1,
method = "xgbTree",
metric = 'RMSE'
)

sessionInfo()


But when I run the train() function I get the error Error: Metric RMSE not applicable for classification models. Then I tried to change variables that were integers to double as suggested by this link. I still seem to get the same error. Am I missing out on an extra parameter that should take care of this? Thank You in advance! I have also included my session information below in case there is version conflict that I am not aware of.



R version 3.4.0 (2017-04-21)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS 10.14

Matrix products: default
BLAS: /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] MASS_7.3-47 bindrcpp_0.2.2 xgboost_0.71.2 caret_6.0-81 lattice_0.20-35 broom_0.4.2 lubridate_1.6.0 dplyr_0.7.8 purrr_0.2.3
[10] readr_1.1.1 tidyr_0.7.2 tibble_1.4.2 ggplot2_2.2.1.9000 tidyverse_1.1.1

loaded via a namespace (and not attached):
[1] Rcpp_1.0.0 class_7.3-14 utf8_1.1.3 assertthat_0.2.0 ipred_0.9-6 psych_1.7.5 foreach_1.4.3 R6_2.2.2
[9] cellranger_1.1.0 plyr_1.8.4 stats4_3.4.0 httr_1.3.1 pillar_1.2.1 rlang_0.3.0.1 lazyeval_0.2.1 readxl_1.0.0
[17] rstudioapi_0.7 data.table_1.10.4 rpart_4.1-11 Matrix_1.2-9 splines_3.4.0 gower_0.1.2 stringr_1.3.0 foreign_0.8-67
[25] munsell_0.4.3 compiler_3.4.0 modelr_0.1.1 pkgconfig_2.0.1 mnormt_1.5-5 nnet_7.3-12 tidyselect_0.2.5 prodlim_2018.04.18
[33] codetools_0.2-15 crayon_1.3.4 withr_2.1.2 recipes_0.1.4 ModelMetrics_1.1.0 grid_3.4.0 nlme_3.1-131 jsonlite_1.5
[41] gtable_0.2.0 magrittr_1.5 waterfalls_0.1.2 scales_0.5.0.9000 cli_1.0.0 stringi_1.1.7 reshape2_1.4.3 timeDate_3012.100
[49] xml2_1.2.0 generics_0.0.1 lava_1.6.1 iterators_1.0.8 tools_3.4.0 forcats_0.2.0 glue_1.3.0 hms_0.3
[57] parallel_3.4.0 survival_2.41-3 colorspace_1.3-2 xgboostExplainer_0.1 rvest_0.3.2 bindr_0.1.1 haven_1.1.0









share|improve this question

























  • It is the Boston data from MASS

    – adhok
    Nov 23 '18 at 5:38











  • Like the comment in the link you have mentioned says; change the target variable y = as.matrix(data_model$medv) to double, i.e., y = as.double(data_model$medv)

    – discipulus
    Nov 23 '18 at 5:44
















0












0








0








I am trying to build a regression model using the Boston Housing data using the caret package. The code is as follows



library(tidyverse)
library(ggplot2)
library(lubridate)
library(broom)
library(caret)
library(xgboost)

#list.files()

options(scipen = 999)

library(MASS)

data_model <- Boston
data_model <- as.data.frame(data_model)

# based on this link https://stackoverflow.com/questions/51762536/r-xgboost-on-caret-attempts-to-perform-classification-instead-of-regression
data_model$medv <- as.double(data_model$medv)
data_model$zn <- as.double(data_model$zn)
xgb_grid_1 = expand.grid(
nrounds = 1000,
max_depth = c(2, 4, 6, 8, 10),
eta=c(0.5, 0.1, 0.07),
gamma = 0.01,
colsample_bytree=0.5,
min_child_weight=1,
subsample=0.5
)

xgb_trcontrol_1 = trainControl(
method = "cv",
number = 5,
allowParallel = TRUE
)


xgb_train_1 = train(
x = data_model %>% dplyr::select(-medv) %>% as.matrix(),
y = as.matrix(data_model$medv),
trControl = xgb_trcontrol_1,
tuneGrid = xgb_grid_1,
method = "xgbTree",
metric = 'RMSE'
)

sessionInfo()


But when I run the train() function I get the error Error: Metric RMSE not applicable for classification models. Then I tried to change variables that were integers to double as suggested by this link. I still seem to get the same error. Am I missing out on an extra parameter that should take care of this? Thank You in advance! I have also included my session information below in case there is version conflict that I am not aware of.



R version 3.4.0 (2017-04-21)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS 10.14

Matrix products: default
BLAS: /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] MASS_7.3-47 bindrcpp_0.2.2 xgboost_0.71.2 caret_6.0-81 lattice_0.20-35 broom_0.4.2 lubridate_1.6.0 dplyr_0.7.8 purrr_0.2.3
[10] readr_1.1.1 tidyr_0.7.2 tibble_1.4.2 ggplot2_2.2.1.9000 tidyverse_1.1.1

loaded via a namespace (and not attached):
[1] Rcpp_1.0.0 class_7.3-14 utf8_1.1.3 assertthat_0.2.0 ipred_0.9-6 psych_1.7.5 foreach_1.4.3 R6_2.2.2
[9] cellranger_1.1.0 plyr_1.8.4 stats4_3.4.0 httr_1.3.1 pillar_1.2.1 rlang_0.3.0.1 lazyeval_0.2.1 readxl_1.0.0
[17] rstudioapi_0.7 data.table_1.10.4 rpart_4.1-11 Matrix_1.2-9 splines_3.4.0 gower_0.1.2 stringr_1.3.0 foreign_0.8-67
[25] munsell_0.4.3 compiler_3.4.0 modelr_0.1.1 pkgconfig_2.0.1 mnormt_1.5-5 nnet_7.3-12 tidyselect_0.2.5 prodlim_2018.04.18
[33] codetools_0.2-15 crayon_1.3.4 withr_2.1.2 recipes_0.1.4 ModelMetrics_1.1.0 grid_3.4.0 nlme_3.1-131 jsonlite_1.5
[41] gtable_0.2.0 magrittr_1.5 waterfalls_0.1.2 scales_0.5.0.9000 cli_1.0.0 stringi_1.1.7 reshape2_1.4.3 timeDate_3012.100
[49] xml2_1.2.0 generics_0.0.1 lava_1.6.1 iterators_1.0.8 tools_3.4.0 forcats_0.2.0 glue_1.3.0 hms_0.3
[57] parallel_3.4.0 survival_2.41-3 colorspace_1.3-2 xgboostExplainer_0.1 rvest_0.3.2 bindr_0.1.1 haven_1.1.0









share|improve this question
















I am trying to build a regression model using the Boston Housing data using the caret package. The code is as follows



library(tidyverse)
library(ggplot2)
library(lubridate)
library(broom)
library(caret)
library(xgboost)

#list.files()

options(scipen = 999)

library(MASS)

data_model <- Boston
data_model <- as.data.frame(data_model)

# based on this link https://stackoverflow.com/questions/51762536/r-xgboost-on-caret-attempts-to-perform-classification-instead-of-regression
data_model$medv <- as.double(data_model$medv)
data_model$zn <- as.double(data_model$zn)
xgb_grid_1 = expand.grid(
nrounds = 1000,
max_depth = c(2, 4, 6, 8, 10),
eta=c(0.5, 0.1, 0.07),
gamma = 0.01,
colsample_bytree=0.5,
min_child_weight=1,
subsample=0.5
)

xgb_trcontrol_1 = trainControl(
method = "cv",
number = 5,
allowParallel = TRUE
)


xgb_train_1 = train(
x = data_model %>% dplyr::select(-medv) %>% as.matrix(),
y = as.matrix(data_model$medv),
trControl = xgb_trcontrol_1,
tuneGrid = xgb_grid_1,
method = "xgbTree",
metric = 'RMSE'
)

sessionInfo()


But when I run the train() function I get the error Error: Metric RMSE not applicable for classification models. Then I tried to change variables that were integers to double as suggested by this link. I still seem to get the same error. Am I missing out on an extra parameter that should take care of this? Thank You in advance! I have also included my session information below in case there is version conflict that I am not aware of.



R version 3.4.0 (2017-04-21)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS 10.14

Matrix products: default
BLAS: /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] MASS_7.3-47 bindrcpp_0.2.2 xgboost_0.71.2 caret_6.0-81 lattice_0.20-35 broom_0.4.2 lubridate_1.6.0 dplyr_0.7.8 purrr_0.2.3
[10] readr_1.1.1 tidyr_0.7.2 tibble_1.4.2 ggplot2_2.2.1.9000 tidyverse_1.1.1

loaded via a namespace (and not attached):
[1] Rcpp_1.0.0 class_7.3-14 utf8_1.1.3 assertthat_0.2.0 ipred_0.9-6 psych_1.7.5 foreach_1.4.3 R6_2.2.2
[9] cellranger_1.1.0 plyr_1.8.4 stats4_3.4.0 httr_1.3.1 pillar_1.2.1 rlang_0.3.0.1 lazyeval_0.2.1 readxl_1.0.0
[17] rstudioapi_0.7 data.table_1.10.4 rpart_4.1-11 Matrix_1.2-9 splines_3.4.0 gower_0.1.2 stringr_1.3.0 foreign_0.8-67
[25] munsell_0.4.3 compiler_3.4.0 modelr_0.1.1 pkgconfig_2.0.1 mnormt_1.5-5 nnet_7.3-12 tidyselect_0.2.5 prodlim_2018.04.18
[33] codetools_0.2-15 crayon_1.3.4 withr_2.1.2 recipes_0.1.4 ModelMetrics_1.1.0 grid_3.4.0 nlme_3.1-131 jsonlite_1.5
[41] gtable_0.2.0 magrittr_1.5 waterfalls_0.1.2 scales_0.5.0.9000 cli_1.0.0 stringi_1.1.7 reshape2_1.4.3 timeDate_3012.100
[49] xml2_1.2.0 generics_0.0.1 lava_1.6.1 iterators_1.0.8 tools_3.4.0 forcats_0.2.0 glue_1.3.0 hms_0.3
[57] parallel_3.4.0 survival_2.41-3 colorspace_1.3-2 xgboostExplainer_0.1 rvest_0.3.2 bindr_0.1.1 haven_1.1.0






r r-caret xgboost






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Nov 25 '18 at 14:58









jmuhlenkamp

1,514526




1,514526










asked Nov 23 '18 at 5:16









adhokadhok

728




728













  • It is the Boston data from MASS

    – adhok
    Nov 23 '18 at 5:38











  • Like the comment in the link you have mentioned says; change the target variable y = as.matrix(data_model$medv) to double, i.e., y = as.double(data_model$medv)

    – discipulus
    Nov 23 '18 at 5:44





















  • It is the Boston data from MASS

    – adhok
    Nov 23 '18 at 5:38











  • Like the comment in the link you have mentioned says; change the target variable y = as.matrix(data_model$medv) to double, i.e., y = as.double(data_model$medv)

    – discipulus
    Nov 23 '18 at 5:44



















It is the Boston data from MASS

– adhok
Nov 23 '18 at 5:38





It is the Boston data from MASS

– adhok
Nov 23 '18 at 5:38













Like the comment in the link you have mentioned says; change the target variable y = as.matrix(data_model$medv) to double, i.e., y = as.double(data_model$medv)

– discipulus
Nov 23 '18 at 5:44







Like the comment in the link you have mentioned says; change the target variable y = as.matrix(data_model$medv) to double, i.e., y = as.double(data_model$medv)

– discipulus
Nov 23 '18 at 5:44














1 Answer
1






active

oldest

votes


















1














You have already converted data_model$zn to double. So, just remove as.matrix in the parameter y = as.matrix(data_model$medv)






share|improve this answer























    Your Answer






    StackExchange.ifUsing("editor", function () {
    StackExchange.using("externalEditor", function () {
    StackExchange.using("snippets", function () {
    StackExchange.snippets.init();
    });
    });
    }, "code-snippets");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "1"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53440974%2funable-to-run-parameter-tuning-for-xgboost-regression-model-using-caret%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1














    You have already converted data_model$zn to double. So, just remove as.matrix in the parameter y = as.matrix(data_model$medv)






    share|improve this answer




























      1














      You have already converted data_model$zn to double. So, just remove as.matrix in the parameter y = as.matrix(data_model$medv)






      share|improve this answer


























        1












        1








        1







        You have already converted data_model$zn to double. So, just remove as.matrix in the parameter y = as.matrix(data_model$medv)






        share|improve this answer













        You have already converted data_model$zn to double. So, just remove as.matrix in the parameter y = as.matrix(data_model$medv)







        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered Nov 23 '18 at 5:50









        TeeKeaTeeKea

        3,22851932




        3,22851932
































            draft saved

            draft discarded




















































            Thanks for contributing an answer to Stack Overflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53440974%2funable-to-run-parameter-tuning-for-xgboost-regression-model-using-caret%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            這個網誌中的熱門文章

            Xamarin.form Move up view when keyboard appear

            Post-Redirect-Get with Spring WebFlux and Thymeleaf

            Anylogic : not able to use stopDelay()