How to transform array of JSONs to rows before writeStream to Elasticsearch?
Follow-up to this question
I have JSON streaming data in the format same as below
| A | B |
|-------|------------------------------------------|
| ABC | [{C:1, D:1}, {C:2, D:4}] |
| XYZ | [{C:3, D :6}, {C:9, D:11}, {C:5, D:12}] |
I need to transform it to the format below
| A | C | D |
|-------|-----|------|
| ABC | 1 | 1 |
| ABC | 2 | 4 |
| XYZ | 3 | 6 |
| XYZ | 9 | 11 |
| XYZ | 5 | 12 |
To achieve this performed the transformations as suggested to the previous question.
val df1 = df0.select($"A", explode($"B")).toDF("A", "Bn")
val df2 = df1.withColumn("SeqNum", monotonically_increasing_id()).toDF("A", "Bn", "SeqNum")
val df3 = df2.select($"A", explode($"Bn"), $"SeqNum").toDF("A", "B", "C", "SeqNum")
val df4 = df3.withColumn("dummy", concat( $"SeqNum", lit("||"), $"A"))
val df5 = df4.select($"dummy", $"B", $"C").groupBy("dummy").pivot("B").agg(first($"C"))
val df6 = df5.withColumn("A", substring_index(col("dummy"), "||", -1)).drop("dummy")
Now I need to save the data to a ElasticSearch.
df6.writeStream
.outputMode("complete")
.format("es")
.option("es.resource", "index/type")
.option("es.nodes", "localhost")
.option("es.port", 9200)
.start()
.awaitTermination()
I get an error that ElasticSearch doesn't support Append
output mode. On Append
mode it fails write to writeStream
with aggregation cannot be done on Append
mode. I was able to write to console on complete mode. How can I write the data to ElasticSearch now
Any help will be appreciated.
apache-spark elasticsearch spark-structured-streaming elasticsearch-spark
add a comment |
Follow-up to this question
I have JSON streaming data in the format same as below
| A | B |
|-------|------------------------------------------|
| ABC | [{C:1, D:1}, {C:2, D:4}] |
| XYZ | [{C:3, D :6}, {C:9, D:11}, {C:5, D:12}] |
I need to transform it to the format below
| A | C | D |
|-------|-----|------|
| ABC | 1 | 1 |
| ABC | 2 | 4 |
| XYZ | 3 | 6 |
| XYZ | 9 | 11 |
| XYZ | 5 | 12 |
To achieve this performed the transformations as suggested to the previous question.
val df1 = df0.select($"A", explode($"B")).toDF("A", "Bn")
val df2 = df1.withColumn("SeqNum", monotonically_increasing_id()).toDF("A", "Bn", "SeqNum")
val df3 = df2.select($"A", explode($"Bn"), $"SeqNum").toDF("A", "B", "C", "SeqNum")
val df4 = df3.withColumn("dummy", concat( $"SeqNum", lit("||"), $"A"))
val df5 = df4.select($"dummy", $"B", $"C").groupBy("dummy").pivot("B").agg(first($"C"))
val df6 = df5.withColumn("A", substring_index(col("dummy"), "||", -1)).drop("dummy")
Now I need to save the data to a ElasticSearch.
df6.writeStream
.outputMode("complete")
.format("es")
.option("es.resource", "index/type")
.option("es.nodes", "localhost")
.option("es.port", 9200)
.start()
.awaitTermination()
I get an error that ElasticSearch doesn't support Append
output mode. On Append
mode it fails write to writeStream
with aggregation cannot be done on Append
mode. I was able to write to console on complete mode. How can I write the data to ElasticSearch now
Any help will be appreciated.
apache-spark elasticsearch spark-structured-streaming elasticsearch-spark
add a comment |
Follow-up to this question
I have JSON streaming data in the format same as below
| A | B |
|-------|------------------------------------------|
| ABC | [{C:1, D:1}, {C:2, D:4}] |
| XYZ | [{C:3, D :6}, {C:9, D:11}, {C:5, D:12}] |
I need to transform it to the format below
| A | C | D |
|-------|-----|------|
| ABC | 1 | 1 |
| ABC | 2 | 4 |
| XYZ | 3 | 6 |
| XYZ | 9 | 11 |
| XYZ | 5 | 12 |
To achieve this performed the transformations as suggested to the previous question.
val df1 = df0.select($"A", explode($"B")).toDF("A", "Bn")
val df2 = df1.withColumn("SeqNum", monotonically_increasing_id()).toDF("A", "Bn", "SeqNum")
val df3 = df2.select($"A", explode($"Bn"), $"SeqNum").toDF("A", "B", "C", "SeqNum")
val df4 = df3.withColumn("dummy", concat( $"SeqNum", lit("||"), $"A"))
val df5 = df4.select($"dummy", $"B", $"C").groupBy("dummy").pivot("B").agg(first($"C"))
val df6 = df5.withColumn("A", substring_index(col("dummy"), "||", -1)).drop("dummy")
Now I need to save the data to a ElasticSearch.
df6.writeStream
.outputMode("complete")
.format("es")
.option("es.resource", "index/type")
.option("es.nodes", "localhost")
.option("es.port", 9200)
.start()
.awaitTermination()
I get an error that ElasticSearch doesn't support Append
output mode. On Append
mode it fails write to writeStream
with aggregation cannot be done on Append
mode. I was able to write to console on complete mode. How can I write the data to ElasticSearch now
Any help will be appreciated.
apache-spark elasticsearch spark-structured-streaming elasticsearch-spark
Follow-up to this question
I have JSON streaming data in the format same as below
| A | B |
|-------|------------------------------------------|
| ABC | [{C:1, D:1}, {C:2, D:4}] |
| XYZ | [{C:3, D :6}, {C:9, D:11}, {C:5, D:12}] |
I need to transform it to the format below
| A | C | D |
|-------|-----|------|
| ABC | 1 | 1 |
| ABC | 2 | 4 |
| XYZ | 3 | 6 |
| XYZ | 9 | 11 |
| XYZ | 5 | 12 |
To achieve this performed the transformations as suggested to the previous question.
val df1 = df0.select($"A", explode($"B")).toDF("A", "Bn")
val df2 = df1.withColumn("SeqNum", monotonically_increasing_id()).toDF("A", "Bn", "SeqNum")
val df3 = df2.select($"A", explode($"Bn"), $"SeqNum").toDF("A", "B", "C", "SeqNum")
val df4 = df3.withColumn("dummy", concat( $"SeqNum", lit("||"), $"A"))
val df5 = df4.select($"dummy", $"B", $"C").groupBy("dummy").pivot("B").agg(first($"C"))
val df6 = df5.withColumn("A", substring_index(col("dummy"), "||", -1)).drop("dummy")
Now I need to save the data to a ElasticSearch.
df6.writeStream
.outputMode("complete")
.format("es")
.option("es.resource", "index/type")
.option("es.nodes", "localhost")
.option("es.port", 9200)
.start()
.awaitTermination()
I get an error that ElasticSearch doesn't support Append
output mode. On Append
mode it fails write to writeStream
with aggregation cannot be done on Append
mode. I was able to write to console on complete mode. How can I write the data to ElasticSearch now
Any help will be appreciated.
apache-spark elasticsearch spark-structured-streaming elasticsearch-spark
apache-spark elasticsearch spark-structured-streaming elasticsearch-spark
edited Nov 25 '18 at 19:53
Jacek Laskowski
46.2k18137276
46.2k18137276
asked Nov 23 '18 at 11:42
Hasif SubairHasif Subair
1222318
1222318
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
There is no need for pivot
or aggregation here. If B
column is indeed Array[Map[String, String]]
(array<map<string, string>>
in SQL types), all you need is a simple select
or withColumn
:
df
.withColumn("B", explode($"B"))
.select($"A", $"B"("C") as "C", $"B"("D") as "D")
add a comment |
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53446051%2fhow-to-transform-array-of-jsons-to-rows-before-writestream-to-elasticsearch%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
There is no need for pivot
or aggregation here. If B
column is indeed Array[Map[String, String]]
(array<map<string, string>>
in SQL types), all you need is a simple select
or withColumn
:
df
.withColumn("B", explode($"B"))
.select($"A", $"B"("C") as "C", $"B"("D") as "D")
add a comment |
There is no need for pivot
or aggregation here. If B
column is indeed Array[Map[String, String]]
(array<map<string, string>>
in SQL types), all you need is a simple select
or withColumn
:
df
.withColumn("B", explode($"B"))
.select($"A", $"B"("C") as "C", $"B"("D") as "D")
add a comment |
There is no need for pivot
or aggregation here. If B
column is indeed Array[Map[String, String]]
(array<map<string, string>>
in SQL types), all you need is a simple select
or withColumn
:
df
.withColumn("B", explode($"B"))
.select($"A", $"B"("C") as "C", $"B"("D") as "D")
There is no need for pivot
or aggregation here. If B
column is indeed Array[Map[String, String]]
(array<map<string, string>>
in SQL types), all you need is a simple select
or withColumn
:
df
.withColumn("B", explode($"B"))
.select($"A", $"B"("C") as "C", $"B"("D") as "D")
answered Nov 23 '18 at 11:54
user10465355user10465355
2,1192521
2,1192521
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53446051%2fhow-to-transform-array-of-jsons-to-rows-before-writestream-to-elasticsearch%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown