Merge Apache Spark columns from array and struct inside struct array
Here is the schema of the incomming data stream. Im using spark 2.3.2 streaming to process the data.
val schema = StructType(Seq(
StructField("status", StringType),
StructField("data", StructType(Seq(
StructField("resultType", StringType),
StructField("result", ArrayType(StructType(Array(
StructField("metric", StructType(Seq(StructField("application", StringType),
StructField("component", StringType),
StructField("instance", StringType)))),
StructField("value", ArrayType(StringType))
))))
)
))))
Here is how i've applied the schema to the dstream's rdd.
val df = rdd.toDS()
.selectExpr("cast (value as string) as myData")
.select(from_json($"myData", schema).as("myData"))
.select($"myData.data.*")
.select("result")
The above code yields the following output
{"result":[{"metric":{"application":"A","component":"S","instance":"tp01.net:9072"},"value":["1.542972576979E9","237006995456"]},
{"metric":{"application":"A","component":"S","instance":"tp02.net:9072"},"value":["1.542972576979E9","237006995456"]},
{"metric":{"application":"A","component":"S","instance":"tp03.net:9072"},"value":["1.542972576979E9","237006995456"]},
{"metric":{"application":"B","component":"S","instance":"bp03.net:9072"},"value":["1.542972576979E9","270860144640"]},
{"metric":{"application":"B","component":"S","instance":"bp04.net:9072"},"value":["1.542972576979E9","270860144640"]},
{"metric":{"application":"B","component":"S","instance":"ps01.net:9072"},"value":["1.542972576979E9","135177400320"]},
]}
But in order to extract features, i need to convert the above to the following data frame
application component instance value1 value2
A S tp01.net:9072 1.542972576979E9 237006995456
A S tp02.net:9072 1.542972576979E9 237006995456
A S tp03.net:9072 1.542972576979E9 237006995456
B S bp03.net:9072 1.542972576979E9 270860144640
B S bp04.net:9072 1.542972576979E9 270860144640
B S ps01.net:9072 1.542972576979E9 135177400320
As you see the each row is already an exploded row. Any ideas on how to select the array values and the struct into a single dataframe please?
Thanks
scala apache-spark apache-spark-sql
add a comment |
Here is the schema of the incomming data stream. Im using spark 2.3.2 streaming to process the data.
val schema = StructType(Seq(
StructField("status", StringType),
StructField("data", StructType(Seq(
StructField("resultType", StringType),
StructField("result", ArrayType(StructType(Array(
StructField("metric", StructType(Seq(StructField("application", StringType),
StructField("component", StringType),
StructField("instance", StringType)))),
StructField("value", ArrayType(StringType))
))))
)
))))
Here is how i've applied the schema to the dstream's rdd.
val df = rdd.toDS()
.selectExpr("cast (value as string) as myData")
.select(from_json($"myData", schema).as("myData"))
.select($"myData.data.*")
.select("result")
The above code yields the following output
{"result":[{"metric":{"application":"A","component":"S","instance":"tp01.net:9072"},"value":["1.542972576979E9","237006995456"]},
{"metric":{"application":"A","component":"S","instance":"tp02.net:9072"},"value":["1.542972576979E9","237006995456"]},
{"metric":{"application":"A","component":"S","instance":"tp03.net:9072"},"value":["1.542972576979E9","237006995456"]},
{"metric":{"application":"B","component":"S","instance":"bp03.net:9072"},"value":["1.542972576979E9","270860144640"]},
{"metric":{"application":"B","component":"S","instance":"bp04.net:9072"},"value":["1.542972576979E9","270860144640"]},
{"metric":{"application":"B","component":"S","instance":"ps01.net:9072"},"value":["1.542972576979E9","135177400320"]},
]}
But in order to extract features, i need to convert the above to the following data frame
application component instance value1 value2
A S tp01.net:9072 1.542972576979E9 237006995456
A S tp02.net:9072 1.542972576979E9 237006995456
A S tp03.net:9072 1.542972576979E9 237006995456
B S bp03.net:9072 1.542972576979E9 270860144640
B S bp04.net:9072 1.542972576979E9 270860144640
B S ps01.net:9072 1.542972576979E9 135177400320
As you see the each row is already an exploded row. Any ideas on how to select the array values and the struct into a single dataframe please?
Thanks
scala apache-spark apache-spark-sql
1
Try usingdf.select(explode($"result").as("flat")).select($"flat.metric.*", $"flat.value".getItem(0).as("value1"), $"flat.value".getItem(1).as("value2")).show()
– vindev
Nov 23 '18 at 13:46
Works perfectly. Thank you!
– user1384205
Nov 23 '18 at 15:16
add a comment |
Here is the schema of the incomming data stream. Im using spark 2.3.2 streaming to process the data.
val schema = StructType(Seq(
StructField("status", StringType),
StructField("data", StructType(Seq(
StructField("resultType", StringType),
StructField("result", ArrayType(StructType(Array(
StructField("metric", StructType(Seq(StructField("application", StringType),
StructField("component", StringType),
StructField("instance", StringType)))),
StructField("value", ArrayType(StringType))
))))
)
))))
Here is how i've applied the schema to the dstream's rdd.
val df = rdd.toDS()
.selectExpr("cast (value as string) as myData")
.select(from_json($"myData", schema).as("myData"))
.select($"myData.data.*")
.select("result")
The above code yields the following output
{"result":[{"metric":{"application":"A","component":"S","instance":"tp01.net:9072"},"value":["1.542972576979E9","237006995456"]},
{"metric":{"application":"A","component":"S","instance":"tp02.net:9072"},"value":["1.542972576979E9","237006995456"]},
{"metric":{"application":"A","component":"S","instance":"tp03.net:9072"},"value":["1.542972576979E9","237006995456"]},
{"metric":{"application":"B","component":"S","instance":"bp03.net:9072"},"value":["1.542972576979E9","270860144640"]},
{"metric":{"application":"B","component":"S","instance":"bp04.net:9072"},"value":["1.542972576979E9","270860144640"]},
{"metric":{"application":"B","component":"S","instance":"ps01.net:9072"},"value":["1.542972576979E9","135177400320"]},
]}
But in order to extract features, i need to convert the above to the following data frame
application component instance value1 value2
A S tp01.net:9072 1.542972576979E9 237006995456
A S tp02.net:9072 1.542972576979E9 237006995456
A S tp03.net:9072 1.542972576979E9 237006995456
B S bp03.net:9072 1.542972576979E9 270860144640
B S bp04.net:9072 1.542972576979E9 270860144640
B S ps01.net:9072 1.542972576979E9 135177400320
As you see the each row is already an exploded row. Any ideas on how to select the array values and the struct into a single dataframe please?
Thanks
scala apache-spark apache-spark-sql
Here is the schema of the incomming data stream. Im using spark 2.3.2 streaming to process the data.
val schema = StructType(Seq(
StructField("status", StringType),
StructField("data", StructType(Seq(
StructField("resultType", StringType),
StructField("result", ArrayType(StructType(Array(
StructField("metric", StructType(Seq(StructField("application", StringType),
StructField("component", StringType),
StructField("instance", StringType)))),
StructField("value", ArrayType(StringType))
))))
)
))))
Here is how i've applied the schema to the dstream's rdd.
val df = rdd.toDS()
.selectExpr("cast (value as string) as myData")
.select(from_json($"myData", schema).as("myData"))
.select($"myData.data.*")
.select("result")
The above code yields the following output
{"result":[{"metric":{"application":"A","component":"S","instance":"tp01.net:9072"},"value":["1.542972576979E9","237006995456"]},
{"metric":{"application":"A","component":"S","instance":"tp02.net:9072"},"value":["1.542972576979E9","237006995456"]},
{"metric":{"application":"A","component":"S","instance":"tp03.net:9072"},"value":["1.542972576979E9","237006995456"]},
{"metric":{"application":"B","component":"S","instance":"bp03.net:9072"},"value":["1.542972576979E9","270860144640"]},
{"metric":{"application":"B","component":"S","instance":"bp04.net:9072"},"value":["1.542972576979E9","270860144640"]},
{"metric":{"application":"B","component":"S","instance":"ps01.net:9072"},"value":["1.542972576979E9","135177400320"]},
]}
But in order to extract features, i need to convert the above to the following data frame
application component instance value1 value2
A S tp01.net:9072 1.542972576979E9 237006995456
A S tp02.net:9072 1.542972576979E9 237006995456
A S tp03.net:9072 1.542972576979E9 237006995456
B S bp03.net:9072 1.542972576979E9 270860144640
B S bp04.net:9072 1.542972576979E9 270860144640
B S ps01.net:9072 1.542972576979E9 135177400320
As you see the each row is already an exploded row. Any ideas on how to select the array values and the struct into a single dataframe please?
Thanks
scala apache-spark apache-spark-sql
scala apache-spark apache-spark-sql
asked Nov 23 '18 at 13:20
user1384205user1384205
4382928
4382928
1
Try usingdf.select(explode($"result").as("flat")).select($"flat.metric.*", $"flat.value".getItem(0).as("value1"), $"flat.value".getItem(1).as("value2")).show()
– vindev
Nov 23 '18 at 13:46
Works perfectly. Thank you!
– user1384205
Nov 23 '18 at 15:16
add a comment |
1
Try usingdf.select(explode($"result").as("flat")).select($"flat.metric.*", $"flat.value".getItem(0).as("value1"), $"flat.value".getItem(1).as("value2")).show()
– vindev
Nov 23 '18 at 13:46
Works perfectly. Thank you!
– user1384205
Nov 23 '18 at 15:16
1
1
Try using
df.select(explode($"result").as("flat")).select($"flat.metric.*", $"flat.value".getItem(0).as("value1"), $"flat.value".getItem(1).as("value2")).show()
– vindev
Nov 23 '18 at 13:46
Try using
df.select(explode($"result").as("flat")).select($"flat.metric.*", $"flat.value".getItem(0).as("value1"), $"flat.value".getItem(1).as("value2")).show()
– vindev
Nov 23 '18 at 13:46
Works perfectly. Thank you!
– user1384205
Nov 23 '18 at 15:16
Works perfectly. Thank you!
– user1384205
Nov 23 '18 at 15:16
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53447493%2fmerge-apache-spark-columns-from-array-and-struct-inside-struct-array%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53447493%2fmerge-apache-spark-columns-from-array-and-struct-inside-struct-array%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
Try using
df.select(explode($"result").as("flat")).select($"flat.metric.*", $"flat.value".getItem(0).as("value1"), $"flat.value".getItem(1).as("value2")).show()
– vindev
Nov 23 '18 at 13:46
Works perfectly. Thank you!
– user1384205
Nov 23 '18 at 15:16