Merge Apache Spark columns from array and struct inside struct array












0















Here is the schema of the incomming data stream. Im using spark 2.3.2 streaming to process the data.



val schema = StructType(Seq(
StructField("status", StringType),
StructField("data", StructType(Seq(
StructField("resultType", StringType),
StructField("result", ArrayType(StructType(Array(
StructField("metric", StructType(Seq(StructField("application", StringType),
StructField("component", StringType),
StructField("instance", StringType)))),
StructField("value", ArrayType(StringType))
))))
)
))))


Here is how i've applied the schema to the dstream's rdd.



  val df = rdd.toDS()                        
.selectExpr("cast (value as string) as myData")
.select(from_json($"myData", schema).as("myData"))
.select($"myData.data.*")
.select("result")


The above code yields the following output



{"result":[{"metric":{"application":"A","component":"S","instance":"tp01.net:9072"},"value":["1.542972576979E9","237006995456"]},
{"metric":{"application":"A","component":"S","instance":"tp02.net:9072"},"value":["1.542972576979E9","237006995456"]},
{"metric":{"application":"A","component":"S","instance":"tp03.net:9072"},"value":["1.542972576979E9","237006995456"]},
{"metric":{"application":"B","component":"S","instance":"bp03.net:9072"},"value":["1.542972576979E9","270860144640"]},
{"metric":{"application":"B","component":"S","instance":"bp04.net:9072"},"value":["1.542972576979E9","270860144640"]},
{"metric":{"application":"B","component":"S","instance":"ps01.net:9072"},"value":["1.542972576979E9","135177400320"]},
]}


But in order to extract features, i need to convert the above to the following data frame



application     component       instance            value1              value2
A S tp01.net:9072 1.542972576979E9 237006995456
A S tp02.net:9072 1.542972576979E9 237006995456
A S tp03.net:9072 1.542972576979E9 237006995456
B S bp03.net:9072 1.542972576979E9 270860144640
B S bp04.net:9072 1.542972576979E9 270860144640
B S ps01.net:9072 1.542972576979E9 135177400320


As you see the each row is already an exploded row. Any ideas on how to select the array values and the struct into a single dataframe please?



Thanks










share|improve this question


















  • 1





    Try using df.select(explode($"result").as("flat")).select($"flat.metric.*", $"flat.value".getItem(0).as("value1"), $"flat.value".getItem(1).as("value2")).show()

    – vindev
    Nov 23 '18 at 13:46











  • Works perfectly. Thank you!

    – user1384205
    Nov 23 '18 at 15:16
















0















Here is the schema of the incomming data stream. Im using spark 2.3.2 streaming to process the data.



val schema = StructType(Seq(
StructField("status", StringType),
StructField("data", StructType(Seq(
StructField("resultType", StringType),
StructField("result", ArrayType(StructType(Array(
StructField("metric", StructType(Seq(StructField("application", StringType),
StructField("component", StringType),
StructField("instance", StringType)))),
StructField("value", ArrayType(StringType))
))))
)
))))


Here is how i've applied the schema to the dstream's rdd.



  val df = rdd.toDS()                        
.selectExpr("cast (value as string) as myData")
.select(from_json($"myData", schema).as("myData"))
.select($"myData.data.*")
.select("result")


The above code yields the following output



{"result":[{"metric":{"application":"A","component":"S","instance":"tp01.net:9072"},"value":["1.542972576979E9","237006995456"]},
{"metric":{"application":"A","component":"S","instance":"tp02.net:9072"},"value":["1.542972576979E9","237006995456"]},
{"metric":{"application":"A","component":"S","instance":"tp03.net:9072"},"value":["1.542972576979E9","237006995456"]},
{"metric":{"application":"B","component":"S","instance":"bp03.net:9072"},"value":["1.542972576979E9","270860144640"]},
{"metric":{"application":"B","component":"S","instance":"bp04.net:9072"},"value":["1.542972576979E9","270860144640"]},
{"metric":{"application":"B","component":"S","instance":"ps01.net:9072"},"value":["1.542972576979E9","135177400320"]},
]}


But in order to extract features, i need to convert the above to the following data frame



application     component       instance            value1              value2
A S tp01.net:9072 1.542972576979E9 237006995456
A S tp02.net:9072 1.542972576979E9 237006995456
A S tp03.net:9072 1.542972576979E9 237006995456
B S bp03.net:9072 1.542972576979E9 270860144640
B S bp04.net:9072 1.542972576979E9 270860144640
B S ps01.net:9072 1.542972576979E9 135177400320


As you see the each row is already an exploded row. Any ideas on how to select the array values and the struct into a single dataframe please?



Thanks










share|improve this question


















  • 1





    Try using df.select(explode($"result").as("flat")).select($"flat.metric.*", $"flat.value".getItem(0).as("value1"), $"flat.value".getItem(1).as("value2")).show()

    – vindev
    Nov 23 '18 at 13:46











  • Works perfectly. Thank you!

    – user1384205
    Nov 23 '18 at 15:16














0












0








0








Here is the schema of the incomming data stream. Im using spark 2.3.2 streaming to process the data.



val schema = StructType(Seq(
StructField("status", StringType),
StructField("data", StructType(Seq(
StructField("resultType", StringType),
StructField("result", ArrayType(StructType(Array(
StructField("metric", StructType(Seq(StructField("application", StringType),
StructField("component", StringType),
StructField("instance", StringType)))),
StructField("value", ArrayType(StringType))
))))
)
))))


Here is how i've applied the schema to the dstream's rdd.



  val df = rdd.toDS()                        
.selectExpr("cast (value as string) as myData")
.select(from_json($"myData", schema).as("myData"))
.select($"myData.data.*")
.select("result")


The above code yields the following output



{"result":[{"metric":{"application":"A","component":"S","instance":"tp01.net:9072"},"value":["1.542972576979E9","237006995456"]},
{"metric":{"application":"A","component":"S","instance":"tp02.net:9072"},"value":["1.542972576979E9","237006995456"]},
{"metric":{"application":"A","component":"S","instance":"tp03.net:9072"},"value":["1.542972576979E9","237006995456"]},
{"metric":{"application":"B","component":"S","instance":"bp03.net:9072"},"value":["1.542972576979E9","270860144640"]},
{"metric":{"application":"B","component":"S","instance":"bp04.net:9072"},"value":["1.542972576979E9","270860144640"]},
{"metric":{"application":"B","component":"S","instance":"ps01.net:9072"},"value":["1.542972576979E9","135177400320"]},
]}


But in order to extract features, i need to convert the above to the following data frame



application     component       instance            value1              value2
A S tp01.net:9072 1.542972576979E9 237006995456
A S tp02.net:9072 1.542972576979E9 237006995456
A S tp03.net:9072 1.542972576979E9 237006995456
B S bp03.net:9072 1.542972576979E9 270860144640
B S bp04.net:9072 1.542972576979E9 270860144640
B S ps01.net:9072 1.542972576979E9 135177400320


As you see the each row is already an exploded row. Any ideas on how to select the array values and the struct into a single dataframe please?



Thanks










share|improve this question














Here is the schema of the incomming data stream. Im using spark 2.3.2 streaming to process the data.



val schema = StructType(Seq(
StructField("status", StringType),
StructField("data", StructType(Seq(
StructField("resultType", StringType),
StructField("result", ArrayType(StructType(Array(
StructField("metric", StructType(Seq(StructField("application", StringType),
StructField("component", StringType),
StructField("instance", StringType)))),
StructField("value", ArrayType(StringType))
))))
)
))))


Here is how i've applied the schema to the dstream's rdd.



  val df = rdd.toDS()                        
.selectExpr("cast (value as string) as myData")
.select(from_json($"myData", schema).as("myData"))
.select($"myData.data.*")
.select("result")


The above code yields the following output



{"result":[{"metric":{"application":"A","component":"S","instance":"tp01.net:9072"},"value":["1.542972576979E9","237006995456"]},
{"metric":{"application":"A","component":"S","instance":"tp02.net:9072"},"value":["1.542972576979E9","237006995456"]},
{"metric":{"application":"A","component":"S","instance":"tp03.net:9072"},"value":["1.542972576979E9","237006995456"]},
{"metric":{"application":"B","component":"S","instance":"bp03.net:9072"},"value":["1.542972576979E9","270860144640"]},
{"metric":{"application":"B","component":"S","instance":"bp04.net:9072"},"value":["1.542972576979E9","270860144640"]},
{"metric":{"application":"B","component":"S","instance":"ps01.net:9072"},"value":["1.542972576979E9","135177400320"]},
]}


But in order to extract features, i need to convert the above to the following data frame



application     component       instance            value1              value2
A S tp01.net:9072 1.542972576979E9 237006995456
A S tp02.net:9072 1.542972576979E9 237006995456
A S tp03.net:9072 1.542972576979E9 237006995456
B S bp03.net:9072 1.542972576979E9 270860144640
B S bp04.net:9072 1.542972576979E9 270860144640
B S ps01.net:9072 1.542972576979E9 135177400320


As you see the each row is already an exploded row. Any ideas on how to select the array values and the struct into a single dataframe please?



Thanks







scala apache-spark apache-spark-sql






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked Nov 23 '18 at 13:20









user1384205user1384205

4382928




4382928








  • 1





    Try using df.select(explode($"result").as("flat")).select($"flat.metric.*", $"flat.value".getItem(0).as("value1"), $"flat.value".getItem(1).as("value2")).show()

    – vindev
    Nov 23 '18 at 13:46











  • Works perfectly. Thank you!

    – user1384205
    Nov 23 '18 at 15:16














  • 1





    Try using df.select(explode($"result").as("flat")).select($"flat.metric.*", $"flat.value".getItem(0).as("value1"), $"flat.value".getItem(1).as("value2")).show()

    – vindev
    Nov 23 '18 at 13:46











  • Works perfectly. Thank you!

    – user1384205
    Nov 23 '18 at 15:16








1




1





Try using df.select(explode($"result").as("flat")).select($"flat.metric.*", $"flat.value".getItem(0).as("value1"), $"flat.value".getItem(1).as("value2")).show()

– vindev
Nov 23 '18 at 13:46





Try using df.select(explode($"result").as("flat")).select($"flat.metric.*", $"flat.value".getItem(0).as("value1"), $"flat.value".getItem(1).as("value2")).show()

– vindev
Nov 23 '18 at 13:46













Works perfectly. Thank you!

– user1384205
Nov 23 '18 at 15:16





Works perfectly. Thank you!

– user1384205
Nov 23 '18 at 15:16












0






active

oldest

votes












Your Answer






StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53447493%2fmerge-apache-spark-columns-from-array-and-struct-inside-struct-array%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Stack Overflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53447493%2fmerge-apache-spark-columns-from-array-and-struct-inside-struct-array%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







這個網誌中的熱門文章

Xamarin.form Move up view when keyboard appear

Post-Redirect-Get with Spring WebFlux and Thymeleaf

Anylogic : not able to use stopDelay()