Lowest exponent of a CRC polynomial
I have never seen a CRC polynomial without the lowest term x⁰ = 1.
Are there any exceptions I haven't seen yet?
Why do all CRC polynomials have the lowest term x⁰?
crc polynomials
add a comment |
I have never seen a CRC polynomial without the lowest term x⁰ = 1.
Are there any exceptions I haven't seen yet?
Why do all CRC polynomials have the lowest term x⁰?
crc polynomials
add a comment |
I have never seen a CRC polynomial without the lowest term x⁰ = 1.
Are there any exceptions I haven't seen yet?
Why do all CRC polynomials have the lowest term x⁰?
crc polynomials
I have never seen a CRC polynomial without the lowest term x⁰ = 1.
Are there any exceptions I haven't seen yet?
Why do all CRC polynomials have the lowest term x⁰?
crc polynomials
crc polynomials
asked Nov 11 at 20:16
Silicomancer
4,05933475
4,05933475
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
A CRC polynomial of the form xn + ... + x0 is used for a n bit CRC (it is used with a borrowless divide of the data bits by the CRC polynomial that produces an n bit remainder, the CRC). If the CRC polynomial is of the form xn + ... + x1 (no x0 term), then it is effectively a n-1 bit CRC.
However, there are cases where common code may use different tables for fast computations of 32 bit or 16 bit CRC's, where the only difference in the main part of the code is the constants. The code is written as if the CRC is of the form x32 + ... + x0, but to allow most of the same code to generate a 16 bit CRC, the polynomial is of the form x32 + ... + x16. There's a final step correction done to shift the final CRC right by 16 bits to place the 16 bit CRC in the proper bits. An example of this is in this 500+ line fast crc32/16 assembly example using pclmulqdq insruction (carryless multiply), which in this case is setup to produce a 16 bit CRC.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53252820%2flowest-exponent-of-a-crc-polynomial%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
A CRC polynomial of the form xn + ... + x0 is used for a n bit CRC (it is used with a borrowless divide of the data bits by the CRC polynomial that produces an n bit remainder, the CRC). If the CRC polynomial is of the form xn + ... + x1 (no x0 term), then it is effectively a n-1 bit CRC.
However, there are cases where common code may use different tables for fast computations of 32 bit or 16 bit CRC's, where the only difference in the main part of the code is the constants. The code is written as if the CRC is of the form x32 + ... + x0, but to allow most of the same code to generate a 16 bit CRC, the polynomial is of the form x32 + ... + x16. There's a final step correction done to shift the final CRC right by 16 bits to place the 16 bit CRC in the proper bits. An example of this is in this 500+ line fast crc32/16 assembly example using pclmulqdq insruction (carryless multiply), which in this case is setup to produce a 16 bit CRC.
add a comment |
A CRC polynomial of the form xn + ... + x0 is used for a n bit CRC (it is used with a borrowless divide of the data bits by the CRC polynomial that produces an n bit remainder, the CRC). If the CRC polynomial is of the form xn + ... + x1 (no x0 term), then it is effectively a n-1 bit CRC.
However, there are cases where common code may use different tables for fast computations of 32 bit or 16 bit CRC's, where the only difference in the main part of the code is the constants. The code is written as if the CRC is of the form x32 + ... + x0, but to allow most of the same code to generate a 16 bit CRC, the polynomial is of the form x32 + ... + x16. There's a final step correction done to shift the final CRC right by 16 bits to place the 16 bit CRC in the proper bits. An example of this is in this 500+ line fast crc32/16 assembly example using pclmulqdq insruction (carryless multiply), which in this case is setup to produce a 16 bit CRC.
add a comment |
A CRC polynomial of the form xn + ... + x0 is used for a n bit CRC (it is used with a borrowless divide of the data bits by the CRC polynomial that produces an n bit remainder, the CRC). If the CRC polynomial is of the form xn + ... + x1 (no x0 term), then it is effectively a n-1 bit CRC.
However, there are cases where common code may use different tables for fast computations of 32 bit or 16 bit CRC's, where the only difference in the main part of the code is the constants. The code is written as if the CRC is of the form x32 + ... + x0, but to allow most of the same code to generate a 16 bit CRC, the polynomial is of the form x32 + ... + x16. There's a final step correction done to shift the final CRC right by 16 bits to place the 16 bit CRC in the proper bits. An example of this is in this 500+ line fast crc32/16 assembly example using pclmulqdq insruction (carryless multiply), which in this case is setup to produce a 16 bit CRC.
A CRC polynomial of the form xn + ... + x0 is used for a n bit CRC (it is used with a borrowless divide of the data bits by the CRC polynomial that produces an n bit remainder, the CRC). If the CRC polynomial is of the form xn + ... + x1 (no x0 term), then it is effectively a n-1 bit CRC.
However, there are cases where common code may use different tables for fast computations of 32 bit or 16 bit CRC's, where the only difference in the main part of the code is the constants. The code is written as if the CRC is of the form x32 + ... + x0, but to allow most of the same code to generate a 16 bit CRC, the polynomial is of the form x32 + ... + x16. There's a final step correction done to shift the final CRC right by 16 bits to place the 16 bit CRC in the proper bits. An example of this is in this 500+ line fast crc32/16 assembly example using pclmulqdq insruction (carryless multiply), which in this case is setup to produce a 16 bit CRC.
edited Nov 11 at 22:17
answered Nov 11 at 22:07
rcgldr
15.1k31333
15.1k31333
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53252820%2flowest-exponent-of-a-crc-polynomial%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown