Phosphorescence








Phosphorescent, europium-doped strontium silicate-aluminate oxide powder under visible light, long-wave UV light, and in total darkness


Phosphorescence is a type of photoluminescence related to fluorescence. Unlike fluorescence, a phosphorescent material does not immediately re-emit the radiation it absorbs. The slower time scales of the re-emission are associated with "forbidden" energy state transitions in quantum mechanics. As these transitions occur very slowly in certain materials, absorbed radiation is re-emitted at a lower intensity for up to several hours after the original excitation.


Everyday examples of phosphorescent materials are the glow-in-the-dark toys, stickers, paint, and clock dials that glow after being charged with a bright light such as in any normal reading or room light. Typically, the glow slowly fades out, sometimes within a few minutes or up to a few hours in a dark room.[1]


The study of phosphorescent materials led to the discovery of radioactivity in 1896.




Contents






  • 1 Explanations


    • 1.1 Simple


    • 1.2 Quantum mechanical


      • 1.2.1 Equation






  • 2 Chemiluminescence


  • 3 Materials


  • 4 See also


  • 5 References





Explanations



Simple





Jablonski diagram of an energy scheme used to explain the difference between fluorescence and phosphorescence. The excitation of molecule A to its singlet excited state (1A*)is followed by intersystem crossing to the triplet state (3A) that relaxes to the ground state by phosphorescence.


In simple terms, phosphorescence is a process in which energy absorbed by a substance is released relatively slowly in the form of light. This is in some cases the mechanism used for "glow-in-the-dark" materials which are "charged" by exposure to light. Unlike the relatively swift reactions in fluorescence, such as those seen in a common fluorescent tube, phosphorescent materials "store" absorbed energy for a longer time, as the processes required to re-emit energy occur less often.



Quantum mechanical




After an electron absorbs a photon of high energy, it may undergo vibrational relaxations and intersystem crossing to another spin state. Again the system relaxes vibrationally in the new spin state and eventually emits light by phosphorescence.


Most photoluminescent events, in which a chemical substrate absorbs and then re-emits a photon of light, are fast, in the order of 10 nanoseconds. Light is absorbed and emitted at these fast time scales in cases where the energy of the photons involved matches the available energy states and allowed transitions of the substrate. In the special case of phosphorescence, the electron which absorbed the photon (energy) undergoes an unusual intersystem crossing into an energy state of higher spin multiplicity (see term symbol), usually a triplet state. As a result, the excited electron can become trapped in the triplet state with only "forbidden" transitions available to return to the lower energy singlet state. These transitions, although "forbidden", will still occur in quantum mechanics but are kinetically unfavored and thus progress at significantly slower time scales. Most phosphorescent compounds are still relatively fast emitters, with triplet lifetimes on the order of milliseconds. However, some compounds have triplet lifetimes up to minutes or even hours, allowing these substances to effectively store light energy in the form of very slowly degrading excited electron states. If the phosphorescent quantum yield is high, these substances will release significant amounts of light over long time scales, creating so-called "glow-in-the-dark" materials.



Equation


S0+hνS1→T1→S0+hν {displaystyle S_{0}+hnu to S_{1}to T_{1}to S_{0}+hnu ^{prime } }S_{0}+hnu to S_{1}to T_{1}to S_{0}+hnu ^{prime }

where S is a singlet and T a triplet whose subscripts denote states (0 is the ground state, and 1 the excited state). Transitions can also occur to higher energy levels, but the first excited state is denoted for simplicity.



Chemiluminescence



Some examples of glow-in-the-dark materials do not glow by phosphorescence. For example, glow sticks glow due to a chemiluminescent process which is commonly mistaken for phosphorescence. In chemiluminescence, an excited state is created via a chemical reaction. The light emission tracks the kinetic progress of the underlying chemical reaction. The excited state will then transfer to a dye molecule, also known as a sensitizer or fluorophor, and subsequently fluoresce back to the ground state.



Materials


Common pigments used in phosphorescent materials include zinc sulfide and strontium aluminate. Use of zinc sulfide for safety related products dates back to the 1930s. However, the development of strontium aluminate, with a luminance approximately 10 times greater than zinc sulfide, has relegated most zinc sulfide based products to the novelty category. Strontium aluminate based pigments are now used in exit signs, pathway marking, and other safety related signage.[2]




An extremely intense pulse of UV light in a flashtube produced this blue phosphorescence in the fused silica envelope.




Phosphorescence of the quartz ignition tube of an air-gap flash





See also




Phosphorescent bird figure



  • Luminous gemstones

  • Luminous paint

  • Microsphere

  • Persistent luminescence

  • Phosphor

  • Phosphoroscope

  • Tritium



References





  1. ^ Karl A. Franz, Wolfgang G. Kehr, Alfred Siggel, Jürgen Wieczoreck, and Waldemar Adam "Luminescent Materials" in Ullmann's Encyclopedia of Industrial Chemistry 2002, Wiley-VCH, Weinheim. doi:10.1002/14356007.a15_519


  2. ^ Zitoun, D.; Bernaud, L.; Manteghetti, A. Microwave Synthesis of a Long-Lasting Phosphor. J. Chem. Educ. 2009, 86, 72-75.doi:10.1021/ed086p72














這個網誌中的熱門文章

Xamarin.form Move up view when keyboard appear

Post-Redirect-Get with Spring WebFlux and Thymeleaf

Anylogic : not able to use stopDelay()