Something wrong when computing the receptive field using non-zero gradient in Keras












2















I'm trying to compute the receptive field of some specific neurons based on the non-zero gradient but found one strange thing.



The following is a simple NN model built in keras. The remaining parts are to calculate the gradient of the output (here the targeted neuron of which pos is (0,2) on the first channel) of conv2d_4 w.r.t its input. Through finding those non-zero values on the gradient map, we can easily locate the receptive field of one neuron. The ideal receptive field of one neuron in the output of conv2d_4 w.r.t its input should be 3x3 since the kernel size of conv2d_4 is 3x3, but the non-zero gradient map is a 4x5 patch (given by those TRUE values in f_sum).



import numpy as np
import keras.backend as K
import matplotlib.pyplot as plt
from keras.models import load_model, Model
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D,Input, AveragePooling2D, Lambda

def model_build_func(input_shape=(25,25,1)):
inp = Input(shape=input_shape, name='input')

x = Conv2D(32, (3,3), activation='linear', name='conv2d_1')(inp)
x = Conv2D(32, (3,3), activation='linear', name='conv2d_2')(x)
x = AveragePooling2D(pool_size=(2,2))(x)

x = Conv2D(64, (3,3), activation='linear', name='conv2d_3')(x)
x = Conv2D(64, (3,3), activation='linear', name='conv2d_4')(x)
x = AveragePooling2D(pool_size=(2,2))(x)

x = Flatten()(x)
x = Dense(units=64, name='dense_1')(x)
x = Dense(units=2, name='dense_2')(x)

model = Model(inputs=inp, outputs=x)
return model

# used for building the Lambda layer
def get_mask_tensor(input_tensors, x_pos, y_pos, channel_idx):
mask_tensor = K.tf.gradients(input_tensors[0][:,x_pos,y_pos,channel_idx], input_tensors[1])[0]
return mask_tensor

#specify the position of the neuron that we want to compute the RF
x_pos = 0
y_pos = 2
channel_idx = 0

layer_idx = 5 # the layer: conv2d_4

model = model_build_func()
current_layer = model.layers[layer_idx]

#get the gradient tensor
mask_tensor = Lambda(get_mask_tensor, output_shape=K.int_shape(model.input),
arguments={'x_pos':x_pos, 'y_pos':y_pos, 'channel_idx':channel_idx})([current_layer.output, current_layer.input])

#create a keras model
new_model = Model(inputs=[model.input], outputs=[mask_tensor])

#get the value of the gradient map
gradient_map = new_model.predict(0.1*(np.random.random(size=(32,25,25,1))-0.05))
f_sum = np.sum(np.abs(gradient_map), axis=-1)
f_sum = np.sum(np.abs(f_sum), axis=0)

#f_sum is a binary array.
#It should has a 3x3 patch with TRUE values, but here it's 4x5
plt.imshow(f_sum!=0)
plt.grid()
plt.show()









share|improve this question





























    2















    I'm trying to compute the receptive field of some specific neurons based on the non-zero gradient but found one strange thing.



    The following is a simple NN model built in keras. The remaining parts are to calculate the gradient of the output (here the targeted neuron of which pos is (0,2) on the first channel) of conv2d_4 w.r.t its input. Through finding those non-zero values on the gradient map, we can easily locate the receptive field of one neuron. The ideal receptive field of one neuron in the output of conv2d_4 w.r.t its input should be 3x3 since the kernel size of conv2d_4 is 3x3, but the non-zero gradient map is a 4x5 patch (given by those TRUE values in f_sum).



    import numpy as np
    import keras.backend as K
    import matplotlib.pyplot as plt
    from keras.models import load_model, Model
    from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D,Input, AveragePooling2D, Lambda

    def model_build_func(input_shape=(25,25,1)):
    inp = Input(shape=input_shape, name='input')

    x = Conv2D(32, (3,3), activation='linear', name='conv2d_1')(inp)
    x = Conv2D(32, (3,3), activation='linear', name='conv2d_2')(x)
    x = AveragePooling2D(pool_size=(2,2))(x)

    x = Conv2D(64, (3,3), activation='linear', name='conv2d_3')(x)
    x = Conv2D(64, (3,3), activation='linear', name='conv2d_4')(x)
    x = AveragePooling2D(pool_size=(2,2))(x)

    x = Flatten()(x)
    x = Dense(units=64, name='dense_1')(x)
    x = Dense(units=2, name='dense_2')(x)

    model = Model(inputs=inp, outputs=x)
    return model

    # used for building the Lambda layer
    def get_mask_tensor(input_tensors, x_pos, y_pos, channel_idx):
    mask_tensor = K.tf.gradients(input_tensors[0][:,x_pos,y_pos,channel_idx], input_tensors[1])[0]
    return mask_tensor

    #specify the position of the neuron that we want to compute the RF
    x_pos = 0
    y_pos = 2
    channel_idx = 0

    layer_idx = 5 # the layer: conv2d_4

    model = model_build_func()
    current_layer = model.layers[layer_idx]

    #get the gradient tensor
    mask_tensor = Lambda(get_mask_tensor, output_shape=K.int_shape(model.input),
    arguments={'x_pos':x_pos, 'y_pos':y_pos, 'channel_idx':channel_idx})([current_layer.output, current_layer.input])

    #create a keras model
    new_model = Model(inputs=[model.input], outputs=[mask_tensor])

    #get the value of the gradient map
    gradient_map = new_model.predict(0.1*(np.random.random(size=(32,25,25,1))-0.05))
    f_sum = np.sum(np.abs(gradient_map), axis=-1)
    f_sum = np.sum(np.abs(f_sum), axis=0)

    #f_sum is a binary array.
    #It should has a 3x3 patch with TRUE values, but here it's 4x5
    plt.imshow(f_sum!=0)
    plt.grid()
    plt.show()









    share|improve this question



























      2












      2








      2








      I'm trying to compute the receptive field of some specific neurons based on the non-zero gradient but found one strange thing.



      The following is a simple NN model built in keras. The remaining parts are to calculate the gradient of the output (here the targeted neuron of which pos is (0,2) on the first channel) of conv2d_4 w.r.t its input. Through finding those non-zero values on the gradient map, we can easily locate the receptive field of one neuron. The ideal receptive field of one neuron in the output of conv2d_4 w.r.t its input should be 3x3 since the kernel size of conv2d_4 is 3x3, but the non-zero gradient map is a 4x5 patch (given by those TRUE values in f_sum).



      import numpy as np
      import keras.backend as K
      import matplotlib.pyplot as plt
      from keras.models import load_model, Model
      from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D,Input, AveragePooling2D, Lambda

      def model_build_func(input_shape=(25,25,1)):
      inp = Input(shape=input_shape, name='input')

      x = Conv2D(32, (3,3), activation='linear', name='conv2d_1')(inp)
      x = Conv2D(32, (3,3), activation='linear', name='conv2d_2')(x)
      x = AveragePooling2D(pool_size=(2,2))(x)

      x = Conv2D(64, (3,3), activation='linear', name='conv2d_3')(x)
      x = Conv2D(64, (3,3), activation='linear', name='conv2d_4')(x)
      x = AveragePooling2D(pool_size=(2,2))(x)

      x = Flatten()(x)
      x = Dense(units=64, name='dense_1')(x)
      x = Dense(units=2, name='dense_2')(x)

      model = Model(inputs=inp, outputs=x)
      return model

      # used for building the Lambda layer
      def get_mask_tensor(input_tensors, x_pos, y_pos, channel_idx):
      mask_tensor = K.tf.gradients(input_tensors[0][:,x_pos,y_pos,channel_idx], input_tensors[1])[0]
      return mask_tensor

      #specify the position of the neuron that we want to compute the RF
      x_pos = 0
      y_pos = 2
      channel_idx = 0

      layer_idx = 5 # the layer: conv2d_4

      model = model_build_func()
      current_layer = model.layers[layer_idx]

      #get the gradient tensor
      mask_tensor = Lambda(get_mask_tensor, output_shape=K.int_shape(model.input),
      arguments={'x_pos':x_pos, 'y_pos':y_pos, 'channel_idx':channel_idx})([current_layer.output, current_layer.input])

      #create a keras model
      new_model = Model(inputs=[model.input], outputs=[mask_tensor])

      #get the value of the gradient map
      gradient_map = new_model.predict(0.1*(np.random.random(size=(32,25,25,1))-0.05))
      f_sum = np.sum(np.abs(gradient_map), axis=-1)
      f_sum = np.sum(np.abs(f_sum), axis=0)

      #f_sum is a binary array.
      #It should has a 3x3 patch with TRUE values, but here it's 4x5
      plt.imshow(f_sum!=0)
      plt.grid()
      plt.show()









      share|improve this question
















      I'm trying to compute the receptive field of some specific neurons based on the non-zero gradient but found one strange thing.



      The following is a simple NN model built in keras. The remaining parts are to calculate the gradient of the output (here the targeted neuron of which pos is (0,2) on the first channel) of conv2d_4 w.r.t its input. Through finding those non-zero values on the gradient map, we can easily locate the receptive field of one neuron. The ideal receptive field of one neuron in the output of conv2d_4 w.r.t its input should be 3x3 since the kernel size of conv2d_4 is 3x3, but the non-zero gradient map is a 4x5 patch (given by those TRUE values in f_sum).



      import numpy as np
      import keras.backend as K
      import matplotlib.pyplot as plt
      from keras.models import load_model, Model
      from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D,Input, AveragePooling2D, Lambda

      def model_build_func(input_shape=(25,25,1)):
      inp = Input(shape=input_shape, name='input')

      x = Conv2D(32, (3,3), activation='linear', name='conv2d_1')(inp)
      x = Conv2D(32, (3,3), activation='linear', name='conv2d_2')(x)
      x = AveragePooling2D(pool_size=(2,2))(x)

      x = Conv2D(64, (3,3), activation='linear', name='conv2d_3')(x)
      x = Conv2D(64, (3,3), activation='linear', name='conv2d_4')(x)
      x = AveragePooling2D(pool_size=(2,2))(x)

      x = Flatten()(x)
      x = Dense(units=64, name='dense_1')(x)
      x = Dense(units=2, name='dense_2')(x)

      model = Model(inputs=inp, outputs=x)
      return model

      # used for building the Lambda layer
      def get_mask_tensor(input_tensors, x_pos, y_pos, channel_idx):
      mask_tensor = K.tf.gradients(input_tensors[0][:,x_pos,y_pos,channel_idx], input_tensors[1])[0]
      return mask_tensor

      #specify the position of the neuron that we want to compute the RF
      x_pos = 0
      y_pos = 2
      channel_idx = 0

      layer_idx = 5 # the layer: conv2d_4

      model = model_build_func()
      current_layer = model.layers[layer_idx]

      #get the gradient tensor
      mask_tensor = Lambda(get_mask_tensor, output_shape=K.int_shape(model.input),
      arguments={'x_pos':x_pos, 'y_pos':y_pos, 'channel_idx':channel_idx})([current_layer.output, current_layer.input])

      #create a keras model
      new_model = Model(inputs=[model.input], outputs=[mask_tensor])

      #get the value of the gradient map
      gradient_map = new_model.predict(0.1*(np.random.random(size=(32,25,25,1))-0.05))
      f_sum = np.sum(np.abs(gradient_map), axis=-1)
      f_sum = np.sum(np.abs(f_sum), axis=0)

      #f_sum is a binary array.
      #It should has a 3x3 patch with TRUE values, but here it's 4x5
      plt.imshow(f_sum!=0)
      plt.grid()
      plt.show()






      python keras






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Nov 14 '18 at 11:58







      Yetionyo

















      asked Nov 14 '18 at 9:02









      YetionyoYetionyo

      184




      184
























          0






          active

          oldest

          votes











          Your Answer






          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "1"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53296374%2fsomething-wrong-when-computing-the-receptive-field-using-non-zero-gradient-in-ke%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53296374%2fsomething-wrong-when-computing-the-receptive-field-using-non-zero-gradient-in-ke%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          這個網誌中的熱門文章

          Xamarin.form Move up view when keyboard appear

          Post-Redirect-Get with Spring WebFlux and Thymeleaf

          Anylogic : not able to use stopDelay()