Conditionally Calculate Max and Min Values of a Column





.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ height:90px;width:728px;box-sizing:border-box;
}







1















I have a dataframe as below:



row_no  stock_name  last_price  Var1
1 SAIL 501.00 0
2 SAIL 501.60 23
3 SAIL 500.00 0
4 SAIL 499.10 0
5 SAIL 499.40 0
6 SAIL 499.40 0
7 SAIL 502.00 0
8 SAIL 497.95 0
9 SAIL 495.55 20
10 SAIL 496.75 0
11 SAIL 496.75 0
12 SAIL 513.00 0
13 SAIL 497.00 0
14 SAIL 497.20 0
15 SAIL 497.00 0
16 SAIL 494.00 0
17 SAIL 497.00 0
18 SAIL 497.00 0
19 SAIL 497.00 0
20 SAIL 496.60 -9
21 SAIL 497.25 0


Need to Calculate Max and Min last_price when Var1 is not Zero.



When current Var1 is not equal to Zero, Max & Min last_price to be calculated between previous non zero value of Var1.



Example:
For Row No 9: Max last_price to be calculated as Max(last_price from row 9 to row 2) = 502 and Min last_price as Min(last_price from row 9 to row 2) = 495.55



I want the final dataframe as below:



row_no  stock_name  last_price  Var1    Max_LTP Min_LTP
1 SAIL 501 0 0 0 0
2 SAIL 501.6 23 501.6 501
3 SAIL 500 0 0 0 0
4 SAIL 499.1 0 0 0
5 SAIL 499.4 0 0 0
6 SAIL 499.4 0 0 0
7 SAIL 502 0 0 0 0
8 SAIL 497.95 0 0 0
9 SAIL 495.55 20 502 495.55
10 SAIL 496.75 0 0 0
11 SAIL 496.75 0 0 0
12 SAIL 513 0 0 0 0
13 SAIL 497 0 0 0 0
14 SAIL 497.2 0 0 0
15 SAIL 497 0 0 0 0
16 SAIL 494 0 0 0 0
17 SAIL 497 0 0 0 0
18 SAIL 497 0 0 0 0
19 SAIL 497 0 0 0 0
20 SAIL 496.6 -9 513 494
21 SAIL 497.25 0 0 0 0









share|improve this question

























  • subset a df where Var1 !=0 and then do what you need to do

    – Ken Dekalb
    Nov 23 '18 at 16:13


















1















I have a dataframe as below:



row_no  stock_name  last_price  Var1
1 SAIL 501.00 0
2 SAIL 501.60 23
3 SAIL 500.00 0
4 SAIL 499.10 0
5 SAIL 499.40 0
6 SAIL 499.40 0
7 SAIL 502.00 0
8 SAIL 497.95 0
9 SAIL 495.55 20
10 SAIL 496.75 0
11 SAIL 496.75 0
12 SAIL 513.00 0
13 SAIL 497.00 0
14 SAIL 497.20 0
15 SAIL 497.00 0
16 SAIL 494.00 0
17 SAIL 497.00 0
18 SAIL 497.00 0
19 SAIL 497.00 0
20 SAIL 496.60 -9
21 SAIL 497.25 0


Need to Calculate Max and Min last_price when Var1 is not Zero.



When current Var1 is not equal to Zero, Max & Min last_price to be calculated between previous non zero value of Var1.



Example:
For Row No 9: Max last_price to be calculated as Max(last_price from row 9 to row 2) = 502 and Min last_price as Min(last_price from row 9 to row 2) = 495.55



I want the final dataframe as below:



row_no  stock_name  last_price  Var1    Max_LTP Min_LTP
1 SAIL 501 0 0 0 0
2 SAIL 501.6 23 501.6 501
3 SAIL 500 0 0 0 0
4 SAIL 499.1 0 0 0
5 SAIL 499.4 0 0 0
6 SAIL 499.4 0 0 0
7 SAIL 502 0 0 0 0
8 SAIL 497.95 0 0 0
9 SAIL 495.55 20 502 495.55
10 SAIL 496.75 0 0 0
11 SAIL 496.75 0 0 0
12 SAIL 513 0 0 0 0
13 SAIL 497 0 0 0 0
14 SAIL 497.2 0 0 0
15 SAIL 497 0 0 0 0
16 SAIL 494 0 0 0 0
17 SAIL 497 0 0 0 0
18 SAIL 497 0 0 0 0
19 SAIL 497 0 0 0 0
20 SAIL 496.6 -9 513 494
21 SAIL 497.25 0 0 0 0









share|improve this question

























  • subset a df where Var1 !=0 and then do what you need to do

    – Ken Dekalb
    Nov 23 '18 at 16:13














1












1








1


1






I have a dataframe as below:



row_no  stock_name  last_price  Var1
1 SAIL 501.00 0
2 SAIL 501.60 23
3 SAIL 500.00 0
4 SAIL 499.10 0
5 SAIL 499.40 0
6 SAIL 499.40 0
7 SAIL 502.00 0
8 SAIL 497.95 0
9 SAIL 495.55 20
10 SAIL 496.75 0
11 SAIL 496.75 0
12 SAIL 513.00 0
13 SAIL 497.00 0
14 SAIL 497.20 0
15 SAIL 497.00 0
16 SAIL 494.00 0
17 SAIL 497.00 0
18 SAIL 497.00 0
19 SAIL 497.00 0
20 SAIL 496.60 -9
21 SAIL 497.25 0


Need to Calculate Max and Min last_price when Var1 is not Zero.



When current Var1 is not equal to Zero, Max & Min last_price to be calculated between previous non zero value of Var1.



Example:
For Row No 9: Max last_price to be calculated as Max(last_price from row 9 to row 2) = 502 and Min last_price as Min(last_price from row 9 to row 2) = 495.55



I want the final dataframe as below:



row_no  stock_name  last_price  Var1    Max_LTP Min_LTP
1 SAIL 501 0 0 0 0
2 SAIL 501.6 23 501.6 501
3 SAIL 500 0 0 0 0
4 SAIL 499.1 0 0 0
5 SAIL 499.4 0 0 0
6 SAIL 499.4 0 0 0
7 SAIL 502 0 0 0 0
8 SAIL 497.95 0 0 0
9 SAIL 495.55 20 502 495.55
10 SAIL 496.75 0 0 0
11 SAIL 496.75 0 0 0
12 SAIL 513 0 0 0 0
13 SAIL 497 0 0 0 0
14 SAIL 497.2 0 0 0
15 SAIL 497 0 0 0 0
16 SAIL 494 0 0 0 0
17 SAIL 497 0 0 0 0
18 SAIL 497 0 0 0 0
19 SAIL 497 0 0 0 0
20 SAIL 496.6 -9 513 494
21 SAIL 497.25 0 0 0 0









share|improve this question
















I have a dataframe as below:



row_no  stock_name  last_price  Var1
1 SAIL 501.00 0
2 SAIL 501.60 23
3 SAIL 500.00 0
4 SAIL 499.10 0
5 SAIL 499.40 0
6 SAIL 499.40 0
7 SAIL 502.00 0
8 SAIL 497.95 0
9 SAIL 495.55 20
10 SAIL 496.75 0
11 SAIL 496.75 0
12 SAIL 513.00 0
13 SAIL 497.00 0
14 SAIL 497.20 0
15 SAIL 497.00 0
16 SAIL 494.00 0
17 SAIL 497.00 0
18 SAIL 497.00 0
19 SAIL 497.00 0
20 SAIL 496.60 -9
21 SAIL 497.25 0


Need to Calculate Max and Min last_price when Var1 is not Zero.



When current Var1 is not equal to Zero, Max & Min last_price to be calculated between previous non zero value of Var1.



Example:
For Row No 9: Max last_price to be calculated as Max(last_price from row 9 to row 2) = 502 and Min last_price as Min(last_price from row 9 to row 2) = 495.55



I want the final dataframe as below:



row_no  stock_name  last_price  Var1    Max_LTP Min_LTP
1 SAIL 501 0 0 0 0
2 SAIL 501.6 23 501.6 501
3 SAIL 500 0 0 0 0
4 SAIL 499.1 0 0 0
5 SAIL 499.4 0 0 0
6 SAIL 499.4 0 0 0
7 SAIL 502 0 0 0 0
8 SAIL 497.95 0 0 0
9 SAIL 495.55 20 502 495.55
10 SAIL 496.75 0 0 0
11 SAIL 496.75 0 0 0
12 SAIL 513 0 0 0 0
13 SAIL 497 0 0 0 0
14 SAIL 497.2 0 0 0
15 SAIL 497 0 0 0 0
16 SAIL 494 0 0 0 0
17 SAIL 497 0 0 0 0
18 SAIL 497 0 0 0 0
19 SAIL 497 0 0 0 0
20 SAIL 496.6 -9 513 494
21 SAIL 497.25 0 0 0 0






python python-3.x pandas dataframe list-comprehension






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Nov 23 '18 at 16:31







Pravat

















asked Nov 23 '18 at 16:11









PravatPravat

9310




9310













  • subset a df where Var1 !=0 and then do what you need to do

    – Ken Dekalb
    Nov 23 '18 at 16:13



















  • subset a df where Var1 !=0 and then do what you need to do

    – Ken Dekalb
    Nov 23 '18 at 16:13

















subset a df where Var1 !=0 and then do what you need to do

– Ken Dekalb
Nov 23 '18 at 16:13





subset a df where Var1 !=0 and then do what you need to do

– Ken Dekalb
Nov 23 '18 at 16:13












1 Answer
1






active

oldest

votes


















3














Using Var1 with shift and cumsum create the group key , then groupby , and assign the min and max value back to the original dataframe



mask=df.Var1.ne(0).shift().fillna(0).cumsum()
s=df.groupby(mask).last_price.agg(['min','max'])
s=s[df['Var1'].ne(0).groupby(mask).agg('any')]
s.index=df.index[df.Var1.ne(0)]



df[['Min_LTP','Max_LTP']]=s
df
Out[274]:
row_no stock_name last_price Var1 Max_LTP Min_LTP
0 1 SAIL 501.00 0 NaN NaN
1 2 SAIL 501.60 23 501.6 501.00
2 3 SAIL 500.00 0 NaN NaN
3 4 SAIL 499.10 0 NaN NaN
4 5 SAIL 499.40 0 NaN NaN
5 6 SAIL 499.40 0 NaN NaN
6 7 SAIL 502.00 0 NaN NaN
7 8 SAIL 497.95 0 NaN NaN
8 9 SAIL 495.55 20 502.0 495.55
9 10 SAIL 496.75 0 NaN NaN
10 11 SAIL 496.75 0 NaN NaN
11 12 SAIL 513.00 0 NaN NaN
12 13 SAIL 497.00 0 NaN NaN
13 14 SAIL 497.20 0 NaN NaN
14 15 SAIL 497.00 0 NaN NaN
15 16 SAIL 494.00 0 NaN NaN
16 17 SAIL 497.00 0 NaN NaN
17 18 SAIL 497.00 0 NaN NaN
18 19 SAIL 497.00 0 NaN NaN
19 20 SAIL 496.60 -9 513.0 494.00
20 21 SAIL 497.25 0 NaN NaN





share|improve this answer
























    Your Answer






    StackExchange.ifUsing("editor", function () {
    StackExchange.using("externalEditor", function () {
    StackExchange.using("snippets", function () {
    StackExchange.snippets.init();
    });
    });
    }, "code-snippets");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "1"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53449898%2fconditionally-calculate-max-and-min-values-of-a-column%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3














    Using Var1 with shift and cumsum create the group key , then groupby , and assign the min and max value back to the original dataframe



    mask=df.Var1.ne(0).shift().fillna(0).cumsum()
    s=df.groupby(mask).last_price.agg(['min','max'])
    s=s[df['Var1'].ne(0).groupby(mask).agg('any')]
    s.index=df.index[df.Var1.ne(0)]



    df[['Min_LTP','Max_LTP']]=s
    df
    Out[274]:
    row_no stock_name last_price Var1 Max_LTP Min_LTP
    0 1 SAIL 501.00 0 NaN NaN
    1 2 SAIL 501.60 23 501.6 501.00
    2 3 SAIL 500.00 0 NaN NaN
    3 4 SAIL 499.10 0 NaN NaN
    4 5 SAIL 499.40 0 NaN NaN
    5 6 SAIL 499.40 0 NaN NaN
    6 7 SAIL 502.00 0 NaN NaN
    7 8 SAIL 497.95 0 NaN NaN
    8 9 SAIL 495.55 20 502.0 495.55
    9 10 SAIL 496.75 0 NaN NaN
    10 11 SAIL 496.75 0 NaN NaN
    11 12 SAIL 513.00 0 NaN NaN
    12 13 SAIL 497.00 0 NaN NaN
    13 14 SAIL 497.20 0 NaN NaN
    14 15 SAIL 497.00 0 NaN NaN
    15 16 SAIL 494.00 0 NaN NaN
    16 17 SAIL 497.00 0 NaN NaN
    17 18 SAIL 497.00 0 NaN NaN
    18 19 SAIL 497.00 0 NaN NaN
    19 20 SAIL 496.60 -9 513.0 494.00
    20 21 SAIL 497.25 0 NaN NaN





    share|improve this answer




























      3














      Using Var1 with shift and cumsum create the group key , then groupby , and assign the min and max value back to the original dataframe



      mask=df.Var1.ne(0).shift().fillna(0).cumsum()
      s=df.groupby(mask).last_price.agg(['min','max'])
      s=s[df['Var1'].ne(0).groupby(mask).agg('any')]
      s.index=df.index[df.Var1.ne(0)]



      df[['Min_LTP','Max_LTP']]=s
      df
      Out[274]:
      row_no stock_name last_price Var1 Max_LTP Min_LTP
      0 1 SAIL 501.00 0 NaN NaN
      1 2 SAIL 501.60 23 501.6 501.00
      2 3 SAIL 500.00 0 NaN NaN
      3 4 SAIL 499.10 0 NaN NaN
      4 5 SAIL 499.40 0 NaN NaN
      5 6 SAIL 499.40 0 NaN NaN
      6 7 SAIL 502.00 0 NaN NaN
      7 8 SAIL 497.95 0 NaN NaN
      8 9 SAIL 495.55 20 502.0 495.55
      9 10 SAIL 496.75 0 NaN NaN
      10 11 SAIL 496.75 0 NaN NaN
      11 12 SAIL 513.00 0 NaN NaN
      12 13 SAIL 497.00 0 NaN NaN
      13 14 SAIL 497.20 0 NaN NaN
      14 15 SAIL 497.00 0 NaN NaN
      15 16 SAIL 494.00 0 NaN NaN
      16 17 SAIL 497.00 0 NaN NaN
      17 18 SAIL 497.00 0 NaN NaN
      18 19 SAIL 497.00 0 NaN NaN
      19 20 SAIL 496.60 -9 513.0 494.00
      20 21 SAIL 497.25 0 NaN NaN





      share|improve this answer


























        3












        3








        3







        Using Var1 with shift and cumsum create the group key , then groupby , and assign the min and max value back to the original dataframe



        mask=df.Var1.ne(0).shift().fillna(0).cumsum()
        s=df.groupby(mask).last_price.agg(['min','max'])
        s=s[df['Var1'].ne(0).groupby(mask).agg('any')]
        s.index=df.index[df.Var1.ne(0)]



        df[['Min_LTP','Max_LTP']]=s
        df
        Out[274]:
        row_no stock_name last_price Var1 Max_LTP Min_LTP
        0 1 SAIL 501.00 0 NaN NaN
        1 2 SAIL 501.60 23 501.6 501.00
        2 3 SAIL 500.00 0 NaN NaN
        3 4 SAIL 499.10 0 NaN NaN
        4 5 SAIL 499.40 0 NaN NaN
        5 6 SAIL 499.40 0 NaN NaN
        6 7 SAIL 502.00 0 NaN NaN
        7 8 SAIL 497.95 0 NaN NaN
        8 9 SAIL 495.55 20 502.0 495.55
        9 10 SAIL 496.75 0 NaN NaN
        10 11 SAIL 496.75 0 NaN NaN
        11 12 SAIL 513.00 0 NaN NaN
        12 13 SAIL 497.00 0 NaN NaN
        13 14 SAIL 497.20 0 NaN NaN
        14 15 SAIL 497.00 0 NaN NaN
        15 16 SAIL 494.00 0 NaN NaN
        16 17 SAIL 497.00 0 NaN NaN
        17 18 SAIL 497.00 0 NaN NaN
        18 19 SAIL 497.00 0 NaN NaN
        19 20 SAIL 496.60 -9 513.0 494.00
        20 21 SAIL 497.25 0 NaN NaN





        share|improve this answer













        Using Var1 with shift and cumsum create the group key , then groupby , and assign the min and max value back to the original dataframe



        mask=df.Var1.ne(0).shift().fillna(0).cumsum()
        s=df.groupby(mask).last_price.agg(['min','max'])
        s=s[df['Var1'].ne(0).groupby(mask).agg('any')]
        s.index=df.index[df.Var1.ne(0)]



        df[['Min_LTP','Max_LTP']]=s
        df
        Out[274]:
        row_no stock_name last_price Var1 Max_LTP Min_LTP
        0 1 SAIL 501.00 0 NaN NaN
        1 2 SAIL 501.60 23 501.6 501.00
        2 3 SAIL 500.00 0 NaN NaN
        3 4 SAIL 499.10 0 NaN NaN
        4 5 SAIL 499.40 0 NaN NaN
        5 6 SAIL 499.40 0 NaN NaN
        6 7 SAIL 502.00 0 NaN NaN
        7 8 SAIL 497.95 0 NaN NaN
        8 9 SAIL 495.55 20 502.0 495.55
        9 10 SAIL 496.75 0 NaN NaN
        10 11 SAIL 496.75 0 NaN NaN
        11 12 SAIL 513.00 0 NaN NaN
        12 13 SAIL 497.00 0 NaN NaN
        13 14 SAIL 497.20 0 NaN NaN
        14 15 SAIL 497.00 0 NaN NaN
        15 16 SAIL 494.00 0 NaN NaN
        16 17 SAIL 497.00 0 NaN NaN
        17 18 SAIL 497.00 0 NaN NaN
        18 19 SAIL 497.00 0 NaN NaN
        19 20 SAIL 496.60 -9 513.0 494.00
        20 21 SAIL 497.25 0 NaN NaN






        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered Nov 23 '18 at 16:23









        Wen-BenWen-Ben

        124k83771




        124k83771
































            draft saved

            draft discarded




















































            Thanks for contributing an answer to Stack Overflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53449898%2fconditionally-calculate-max-and-min-values-of-a-column%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            這個網誌中的熱門文章

            Xamarin.form Move up view when keyboard appear

            Post-Redirect-Get with Spring WebFlux and Thymeleaf

            Anylogic : not able to use stopDelay()