R How can I fix DataExplorer error during PCA: “Item 2 has no length”





.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ height:90px;width:728px;box-sizing:border-box;
}







0















I have a data set df with 102 variables: 16 int, 80 factors, 8 logi. There are no NA values.



I've used DataExplorer before without issue, but when I ran it on this data set ...



library(DataExplorer)
create_report(df)


... it chugged along fine, outputting its progress ...



# label: correlation_analysis
# |................................................ | 74%
# ordinary text without R code


... until it got to the PCA section when it produced this error:



#  |..................................................               |  76%
# label: principle_component_analysis
# Quitting from lines 208-221 (report.rmd)
#
# Error in data.table(pc = paste0("PC", seq_along(pca$sdev)), var = var_exp, :
# Item 2 has no length. Provide at least one item (such as NA, NA_integer_ etc) to be repeated to match the 1 row in the longest column. Or, all columns can be 0 length, for insert()ing rows into.


I googled on this error but found only pages explaining PCA and not this error. Any suggestions?



The traceback is



26. stop("Item ", i, " has no length. Provide at least one item (such as NA, NA_integer_ etc) to be repeated to match the ", 
nr, " row", if (nr > 1L) "s", " in the longest column. Or, all columns can be 0 length, for insert()ing rows into.")
25. data.table(pc = paste0("PC", seq_along(pca$sdev)), var = var_exp,
pct = var_exp/sum(var_exp), cum_pct = cumsum(var_exp)/sum(var_exp))
24. plot_prcomp(data = structure(list(EnrollmentID = c(4603L, 8457L,
3290L, 3323L, 6186L, 6501L, 3084L, 8662L, 7676L, 3229L, 6005L,
3387L, 8204L, 9018L, 4517L, 3320L, 8840L, 7729L, 8835L, 5148L,
7560L, 1239L, 5874L, 4963L, 3755L, 3397L, 9877L, 8609L, 6584L, ...
23. do.call(fun_name, c(list(data = data), report_config[[fun_name]])) at <text>#9
22. do_call("plot_prcomp", na_omit = TRUE) at <text>#8
21. eval(expr, envir, enclos)
20. eval(expr, envir, enclos)
19. withVisible(eval(expr, envir, enclos))
18. withCallingHandlers(withVisible(eval(expr, envir, enclos)), warning = wHandler,
error = eHandler, message = mHandler)
17. handle(ev <- withCallingHandlers(withVisible(eval(expr, envir,
enclos)), warning = wHandler, error = eHandler, message = mHandler))
16. timing_fn(handle(ev <- withCallingHandlers(withVisible(eval(expr,
envir, enclos)), warning = wHandler, error = eHandler, message = mHandler)))
15. valuate_call(expr, parsed$src[[i]], envir = envir, enclos = enclos,
debug = debug, last = i == length(out), use_try = stop_on_error !=
2L, keep_warning = keep_warning, keep_message = keep_message,
output_handler = output_handler, include_timing = include_timing)
14. evaluate::evaluate(...)
13. evaluate(code, envir = env, new_device = FALSE, keep_warning = !isFALSE(options$warning),
keep_message = !isFALSE(options$message), stop_on_error = if (options$error &&
options$include) 0L else 2L, output_handler = knit_handlers(options$render,
options))
12. in_dir(input_dir(), evaluate(code, envir = env, new_device = FALSE,
keep_warning = !isFALSE(options$warning), keep_message = !isFALSE(options$message),
stop_on_error = if (options$error && options$include) 0L else 2L,
output_handler = knit_handlers(options$render, options)))
11. block_exec(params)
10. call_block(x)
9. process_group.block(group)
8. process_group(group)
7. withCallingHandlers(if (tangle) process_tangle(group) else process_group(group),
error = function(e) {
setwd(wd)
cat(res, sep = "n", file = output %n% "") ...
6. process_file(text, output)
5. knitr::knit(knit_input, knit_output, envir = envir, quiet = quiet,
encoding = encoding)
4. render(input = report_dir, output_file = output_file, output_dir = output_dir,
intermediates_dir = output_dir, params = list(data = data,
report_config = config, response = y), ...)
3. withCallingHandlers(expr, warning = function(w) invokeRestart("muffleWarning"))
2. suppressWarnings(render(input = report_dir, output_file = output_file,
output_dir = output_dir, intermediates_dir = output_dir,
params = list(data = data, report_config = config, response = y),
...))
1. create_report(df)


Here's the session info:



sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows >= 8 x64 (build 9200)

Matrix products: default

locale:
[1] LC_COLLATE=English_United States.1252 LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252 LC_NUMERIC=C
[5] LC_TIME=English_United States.1252

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] car_3.0-2 knitr_1.20 rmarkdown_1.10 data.table_1.11.8
[5] DataExplorer_0.7.0 mosaic_1.4.0 Matrix_1.2-14 mosaicData_0.17.0
[9] ggformula_0.9.0 ggstance_0.3.1 mdsr_0.1.6 Lahman_6.0-0
[13] ISLR_1.2 forcats_0.3.0 stringr_1.3.1 dplyr_0.7.8
[17] purrr_0.2.5 readr_1.1.1 tidyr_0.8.2 tibble_1.4.2
[21] ggplot2_3.1.0 tidyverse_1.2.1 lattice_0.20-35 carData_3.0-2

loaded via a namespace (and not attached):
[1] ggdendro_0.1-20 httr_1.3.1 RMySQL_0.10.15 jsonlite_1.5 splines_3.5.1
[6] modelr_0.1.2 assertthat_0.2.0 highr_0.7 cellranger_1.1.0 yaml_2.2.0
[11] ggrepel_0.8.0 pillar_1.3.0 backports_1.1.2 glue_1.3.0 downloader_0.4
[16] digest_0.6.18 rvest_0.3.2 colorspace_1.3-2 htmltools_0.3.6 plyr_1.8.4
[21] pkgconfig_2.0.2 broom_0.5.0 haven_1.1.2 scales_1.0.0 openxlsx_4.1.0
[26] rio_0.5.10 withr_2.1.2 lazyeval_0.2.1 cli_1.0.1 magrittr_1.5
[31] crayon_1.3.4 readxl_1.1.0 evaluate_0.12 nlme_3.1-137 MASS_7.3-50
[36] xml2_1.2.0 foreign_0.8-71 tools_3.5.1 hms_0.4.2 munsell_0.5.0
[41] babynames_0.3.0 zip_1.0.0 bindrcpp_0.2.2 networkD3_0.4 compiler_3.5.1
[46] rlang_0.3.0.1 grid_3.5.1 rstudioapi_0.8 htmlwidgets_1.3 igraph_1.2.2
[51] labeling_0.3 mosaicCore_0.6.0 gtable_0.2.0 abind_1.4-5 DBI_1.0.0
[56] curl_3.2 reshape2_1.4.3 R6_2.3.0 gridExtra_2.3 lubridate_1.7.4
[61] rprojroot_1.3-2 bindr_0.1.1 stringi_1.2.4 parallel_3.5.1 Rcpp_1.0.0
[66] dbplyr_1.2.2 tidyselect_0.2.5


Here's the output of introduce(df_dummified) as requested in comments below:



A tibble: 1 x 9  
rows columns discrete_columns continuous_columns
<int> <int> <int> <int>
9527 489 2 487

all_missing_columns total_missing_values
<int> <int>
0 7826

complete_rows total_observations memory_usage
<int> <int> <dbl>
6889 4658703 18919440









share|improve this question































    0















    I have a data set df with 102 variables: 16 int, 80 factors, 8 logi. There are no NA values.



    I've used DataExplorer before without issue, but when I ran it on this data set ...



    library(DataExplorer)
    create_report(df)


    ... it chugged along fine, outputting its progress ...



    # label: correlation_analysis
    # |................................................ | 74%
    # ordinary text without R code


    ... until it got to the PCA section when it produced this error:



    #  |..................................................               |  76%
    # label: principle_component_analysis
    # Quitting from lines 208-221 (report.rmd)
    #
    # Error in data.table(pc = paste0("PC", seq_along(pca$sdev)), var = var_exp, :
    # Item 2 has no length. Provide at least one item (such as NA, NA_integer_ etc) to be repeated to match the 1 row in the longest column. Or, all columns can be 0 length, for insert()ing rows into.


    I googled on this error but found only pages explaining PCA and not this error. Any suggestions?



    The traceback is



    26. stop("Item ", i, " has no length. Provide at least one item (such as NA, NA_integer_ etc) to be repeated to match the ", 
    nr, " row", if (nr > 1L) "s", " in the longest column. Or, all columns can be 0 length, for insert()ing rows into.")
    25. data.table(pc = paste0("PC", seq_along(pca$sdev)), var = var_exp,
    pct = var_exp/sum(var_exp), cum_pct = cumsum(var_exp)/sum(var_exp))
    24. plot_prcomp(data = structure(list(EnrollmentID = c(4603L, 8457L,
    3290L, 3323L, 6186L, 6501L, 3084L, 8662L, 7676L, 3229L, 6005L,
    3387L, 8204L, 9018L, 4517L, 3320L, 8840L, 7729L, 8835L, 5148L,
    7560L, 1239L, 5874L, 4963L, 3755L, 3397L, 9877L, 8609L, 6584L, ...
    23. do.call(fun_name, c(list(data = data), report_config[[fun_name]])) at <text>#9
    22. do_call("plot_prcomp", na_omit = TRUE) at <text>#8
    21. eval(expr, envir, enclos)
    20. eval(expr, envir, enclos)
    19. withVisible(eval(expr, envir, enclos))
    18. withCallingHandlers(withVisible(eval(expr, envir, enclos)), warning = wHandler,
    error = eHandler, message = mHandler)
    17. handle(ev <- withCallingHandlers(withVisible(eval(expr, envir,
    enclos)), warning = wHandler, error = eHandler, message = mHandler))
    16. timing_fn(handle(ev <- withCallingHandlers(withVisible(eval(expr,
    envir, enclos)), warning = wHandler, error = eHandler, message = mHandler)))
    15. valuate_call(expr, parsed$src[[i]], envir = envir, enclos = enclos,
    debug = debug, last = i == length(out), use_try = stop_on_error !=
    2L, keep_warning = keep_warning, keep_message = keep_message,
    output_handler = output_handler, include_timing = include_timing)
    14. evaluate::evaluate(...)
    13. evaluate(code, envir = env, new_device = FALSE, keep_warning = !isFALSE(options$warning),
    keep_message = !isFALSE(options$message), stop_on_error = if (options$error &&
    options$include) 0L else 2L, output_handler = knit_handlers(options$render,
    options))
    12. in_dir(input_dir(), evaluate(code, envir = env, new_device = FALSE,
    keep_warning = !isFALSE(options$warning), keep_message = !isFALSE(options$message),
    stop_on_error = if (options$error && options$include) 0L else 2L,
    output_handler = knit_handlers(options$render, options)))
    11. block_exec(params)
    10. call_block(x)
    9. process_group.block(group)
    8. process_group(group)
    7. withCallingHandlers(if (tangle) process_tangle(group) else process_group(group),
    error = function(e) {
    setwd(wd)
    cat(res, sep = "n", file = output %n% "") ...
    6. process_file(text, output)
    5. knitr::knit(knit_input, knit_output, envir = envir, quiet = quiet,
    encoding = encoding)
    4. render(input = report_dir, output_file = output_file, output_dir = output_dir,
    intermediates_dir = output_dir, params = list(data = data,
    report_config = config, response = y), ...)
    3. withCallingHandlers(expr, warning = function(w) invokeRestart("muffleWarning"))
    2. suppressWarnings(render(input = report_dir, output_file = output_file,
    output_dir = output_dir, intermediates_dir = output_dir,
    params = list(data = data, report_config = config, response = y),
    ...))
    1. create_report(df)


    Here's the session info:



    sessionInfo()
    R version 3.5.1 (2018-07-02)
    Platform: x86_64-w64-mingw32/x64 (64-bit)
    Running under: Windows >= 8 x64 (build 9200)

    Matrix products: default

    locale:
    [1] LC_COLLATE=English_United States.1252 LC_CTYPE=English_United States.1252
    [3] LC_MONETARY=English_United States.1252 LC_NUMERIC=C
    [5] LC_TIME=English_United States.1252

    attached base packages:
    [1] stats graphics grDevices utils datasets methods base

    other attached packages:
    [1] car_3.0-2 knitr_1.20 rmarkdown_1.10 data.table_1.11.8
    [5] DataExplorer_0.7.0 mosaic_1.4.0 Matrix_1.2-14 mosaicData_0.17.0
    [9] ggformula_0.9.0 ggstance_0.3.1 mdsr_0.1.6 Lahman_6.0-0
    [13] ISLR_1.2 forcats_0.3.0 stringr_1.3.1 dplyr_0.7.8
    [17] purrr_0.2.5 readr_1.1.1 tidyr_0.8.2 tibble_1.4.2
    [21] ggplot2_3.1.0 tidyverse_1.2.1 lattice_0.20-35 carData_3.0-2

    loaded via a namespace (and not attached):
    [1] ggdendro_0.1-20 httr_1.3.1 RMySQL_0.10.15 jsonlite_1.5 splines_3.5.1
    [6] modelr_0.1.2 assertthat_0.2.0 highr_0.7 cellranger_1.1.0 yaml_2.2.0
    [11] ggrepel_0.8.0 pillar_1.3.0 backports_1.1.2 glue_1.3.0 downloader_0.4
    [16] digest_0.6.18 rvest_0.3.2 colorspace_1.3-2 htmltools_0.3.6 plyr_1.8.4
    [21] pkgconfig_2.0.2 broom_0.5.0 haven_1.1.2 scales_1.0.0 openxlsx_4.1.0
    [26] rio_0.5.10 withr_2.1.2 lazyeval_0.2.1 cli_1.0.1 magrittr_1.5
    [31] crayon_1.3.4 readxl_1.1.0 evaluate_0.12 nlme_3.1-137 MASS_7.3-50
    [36] xml2_1.2.0 foreign_0.8-71 tools_3.5.1 hms_0.4.2 munsell_0.5.0
    [41] babynames_0.3.0 zip_1.0.0 bindrcpp_0.2.2 networkD3_0.4 compiler_3.5.1
    [46] rlang_0.3.0.1 grid_3.5.1 rstudioapi_0.8 htmlwidgets_1.3 igraph_1.2.2
    [51] labeling_0.3 mosaicCore_0.6.0 gtable_0.2.0 abind_1.4-5 DBI_1.0.0
    [56] curl_3.2 reshape2_1.4.3 R6_2.3.0 gridExtra_2.3 lubridate_1.7.4
    [61] rprojroot_1.3-2 bindr_0.1.1 stringi_1.2.4 parallel_3.5.1 Rcpp_1.0.0
    [66] dbplyr_1.2.2 tidyselect_0.2.5


    Here's the output of introduce(df_dummified) as requested in comments below:



    A tibble: 1 x 9  
    rows columns discrete_columns continuous_columns
    <int> <int> <int> <int>
    9527 489 2 487

    all_missing_columns total_missing_values
    <int> <int>
    0 7826

    complete_rows total_observations memory_usage
    <int> <int> <dbl>
    6889 4658703 18919440









    share|improve this question



























      0












      0








      0








      I have a data set df with 102 variables: 16 int, 80 factors, 8 logi. There are no NA values.



      I've used DataExplorer before without issue, but when I ran it on this data set ...



      library(DataExplorer)
      create_report(df)


      ... it chugged along fine, outputting its progress ...



      # label: correlation_analysis
      # |................................................ | 74%
      # ordinary text without R code


      ... until it got to the PCA section when it produced this error:



      #  |..................................................               |  76%
      # label: principle_component_analysis
      # Quitting from lines 208-221 (report.rmd)
      #
      # Error in data.table(pc = paste0("PC", seq_along(pca$sdev)), var = var_exp, :
      # Item 2 has no length. Provide at least one item (such as NA, NA_integer_ etc) to be repeated to match the 1 row in the longest column. Or, all columns can be 0 length, for insert()ing rows into.


      I googled on this error but found only pages explaining PCA and not this error. Any suggestions?



      The traceback is



      26. stop("Item ", i, " has no length. Provide at least one item (such as NA, NA_integer_ etc) to be repeated to match the ", 
      nr, " row", if (nr > 1L) "s", " in the longest column. Or, all columns can be 0 length, for insert()ing rows into.")
      25. data.table(pc = paste0("PC", seq_along(pca$sdev)), var = var_exp,
      pct = var_exp/sum(var_exp), cum_pct = cumsum(var_exp)/sum(var_exp))
      24. plot_prcomp(data = structure(list(EnrollmentID = c(4603L, 8457L,
      3290L, 3323L, 6186L, 6501L, 3084L, 8662L, 7676L, 3229L, 6005L,
      3387L, 8204L, 9018L, 4517L, 3320L, 8840L, 7729L, 8835L, 5148L,
      7560L, 1239L, 5874L, 4963L, 3755L, 3397L, 9877L, 8609L, 6584L, ...
      23. do.call(fun_name, c(list(data = data), report_config[[fun_name]])) at <text>#9
      22. do_call("plot_prcomp", na_omit = TRUE) at <text>#8
      21. eval(expr, envir, enclos)
      20. eval(expr, envir, enclos)
      19. withVisible(eval(expr, envir, enclos))
      18. withCallingHandlers(withVisible(eval(expr, envir, enclos)), warning = wHandler,
      error = eHandler, message = mHandler)
      17. handle(ev <- withCallingHandlers(withVisible(eval(expr, envir,
      enclos)), warning = wHandler, error = eHandler, message = mHandler))
      16. timing_fn(handle(ev <- withCallingHandlers(withVisible(eval(expr,
      envir, enclos)), warning = wHandler, error = eHandler, message = mHandler)))
      15. valuate_call(expr, parsed$src[[i]], envir = envir, enclos = enclos,
      debug = debug, last = i == length(out), use_try = stop_on_error !=
      2L, keep_warning = keep_warning, keep_message = keep_message,
      output_handler = output_handler, include_timing = include_timing)
      14. evaluate::evaluate(...)
      13. evaluate(code, envir = env, new_device = FALSE, keep_warning = !isFALSE(options$warning),
      keep_message = !isFALSE(options$message), stop_on_error = if (options$error &&
      options$include) 0L else 2L, output_handler = knit_handlers(options$render,
      options))
      12. in_dir(input_dir(), evaluate(code, envir = env, new_device = FALSE,
      keep_warning = !isFALSE(options$warning), keep_message = !isFALSE(options$message),
      stop_on_error = if (options$error && options$include) 0L else 2L,
      output_handler = knit_handlers(options$render, options)))
      11. block_exec(params)
      10. call_block(x)
      9. process_group.block(group)
      8. process_group(group)
      7. withCallingHandlers(if (tangle) process_tangle(group) else process_group(group),
      error = function(e) {
      setwd(wd)
      cat(res, sep = "n", file = output %n% "") ...
      6. process_file(text, output)
      5. knitr::knit(knit_input, knit_output, envir = envir, quiet = quiet,
      encoding = encoding)
      4. render(input = report_dir, output_file = output_file, output_dir = output_dir,
      intermediates_dir = output_dir, params = list(data = data,
      report_config = config, response = y), ...)
      3. withCallingHandlers(expr, warning = function(w) invokeRestart("muffleWarning"))
      2. suppressWarnings(render(input = report_dir, output_file = output_file,
      output_dir = output_dir, intermediates_dir = output_dir,
      params = list(data = data, report_config = config, response = y),
      ...))
      1. create_report(df)


      Here's the session info:



      sessionInfo()
      R version 3.5.1 (2018-07-02)
      Platform: x86_64-w64-mingw32/x64 (64-bit)
      Running under: Windows >= 8 x64 (build 9200)

      Matrix products: default

      locale:
      [1] LC_COLLATE=English_United States.1252 LC_CTYPE=English_United States.1252
      [3] LC_MONETARY=English_United States.1252 LC_NUMERIC=C
      [5] LC_TIME=English_United States.1252

      attached base packages:
      [1] stats graphics grDevices utils datasets methods base

      other attached packages:
      [1] car_3.0-2 knitr_1.20 rmarkdown_1.10 data.table_1.11.8
      [5] DataExplorer_0.7.0 mosaic_1.4.0 Matrix_1.2-14 mosaicData_0.17.0
      [9] ggformula_0.9.0 ggstance_0.3.1 mdsr_0.1.6 Lahman_6.0-0
      [13] ISLR_1.2 forcats_0.3.0 stringr_1.3.1 dplyr_0.7.8
      [17] purrr_0.2.5 readr_1.1.1 tidyr_0.8.2 tibble_1.4.2
      [21] ggplot2_3.1.0 tidyverse_1.2.1 lattice_0.20-35 carData_3.0-2

      loaded via a namespace (and not attached):
      [1] ggdendro_0.1-20 httr_1.3.1 RMySQL_0.10.15 jsonlite_1.5 splines_3.5.1
      [6] modelr_0.1.2 assertthat_0.2.0 highr_0.7 cellranger_1.1.0 yaml_2.2.0
      [11] ggrepel_0.8.0 pillar_1.3.0 backports_1.1.2 glue_1.3.0 downloader_0.4
      [16] digest_0.6.18 rvest_0.3.2 colorspace_1.3-2 htmltools_0.3.6 plyr_1.8.4
      [21] pkgconfig_2.0.2 broom_0.5.0 haven_1.1.2 scales_1.0.0 openxlsx_4.1.0
      [26] rio_0.5.10 withr_2.1.2 lazyeval_0.2.1 cli_1.0.1 magrittr_1.5
      [31] crayon_1.3.4 readxl_1.1.0 evaluate_0.12 nlme_3.1-137 MASS_7.3-50
      [36] xml2_1.2.0 foreign_0.8-71 tools_3.5.1 hms_0.4.2 munsell_0.5.0
      [41] babynames_0.3.0 zip_1.0.0 bindrcpp_0.2.2 networkD3_0.4 compiler_3.5.1
      [46] rlang_0.3.0.1 grid_3.5.1 rstudioapi_0.8 htmlwidgets_1.3 igraph_1.2.2
      [51] labeling_0.3 mosaicCore_0.6.0 gtable_0.2.0 abind_1.4-5 DBI_1.0.0
      [56] curl_3.2 reshape2_1.4.3 R6_2.3.0 gridExtra_2.3 lubridate_1.7.4
      [61] rprojroot_1.3-2 bindr_0.1.1 stringi_1.2.4 parallel_3.5.1 Rcpp_1.0.0
      [66] dbplyr_1.2.2 tidyselect_0.2.5


      Here's the output of introduce(df_dummified) as requested in comments below:



      A tibble: 1 x 9  
      rows columns discrete_columns continuous_columns
      <int> <int> <int> <int>
      9527 489 2 487

      all_missing_columns total_missing_values
      <int> <int>
      0 7826

      complete_rows total_observations memory_usage
      <int> <int> <dbl>
      6889 4658703 18919440









      share|improve this question
















      I have a data set df with 102 variables: 16 int, 80 factors, 8 logi. There are no NA values.



      I've used DataExplorer before without issue, but when I ran it on this data set ...



      library(DataExplorer)
      create_report(df)


      ... it chugged along fine, outputting its progress ...



      # label: correlation_analysis
      # |................................................ | 74%
      # ordinary text without R code


      ... until it got to the PCA section when it produced this error:



      #  |..................................................               |  76%
      # label: principle_component_analysis
      # Quitting from lines 208-221 (report.rmd)
      #
      # Error in data.table(pc = paste0("PC", seq_along(pca$sdev)), var = var_exp, :
      # Item 2 has no length. Provide at least one item (such as NA, NA_integer_ etc) to be repeated to match the 1 row in the longest column. Or, all columns can be 0 length, for insert()ing rows into.


      I googled on this error but found only pages explaining PCA and not this error. Any suggestions?



      The traceback is



      26. stop("Item ", i, " has no length. Provide at least one item (such as NA, NA_integer_ etc) to be repeated to match the ", 
      nr, " row", if (nr > 1L) "s", " in the longest column. Or, all columns can be 0 length, for insert()ing rows into.")
      25. data.table(pc = paste0("PC", seq_along(pca$sdev)), var = var_exp,
      pct = var_exp/sum(var_exp), cum_pct = cumsum(var_exp)/sum(var_exp))
      24. plot_prcomp(data = structure(list(EnrollmentID = c(4603L, 8457L,
      3290L, 3323L, 6186L, 6501L, 3084L, 8662L, 7676L, 3229L, 6005L,
      3387L, 8204L, 9018L, 4517L, 3320L, 8840L, 7729L, 8835L, 5148L,
      7560L, 1239L, 5874L, 4963L, 3755L, 3397L, 9877L, 8609L, 6584L, ...
      23. do.call(fun_name, c(list(data = data), report_config[[fun_name]])) at <text>#9
      22. do_call("plot_prcomp", na_omit = TRUE) at <text>#8
      21. eval(expr, envir, enclos)
      20. eval(expr, envir, enclos)
      19. withVisible(eval(expr, envir, enclos))
      18. withCallingHandlers(withVisible(eval(expr, envir, enclos)), warning = wHandler,
      error = eHandler, message = mHandler)
      17. handle(ev <- withCallingHandlers(withVisible(eval(expr, envir,
      enclos)), warning = wHandler, error = eHandler, message = mHandler))
      16. timing_fn(handle(ev <- withCallingHandlers(withVisible(eval(expr,
      envir, enclos)), warning = wHandler, error = eHandler, message = mHandler)))
      15. valuate_call(expr, parsed$src[[i]], envir = envir, enclos = enclos,
      debug = debug, last = i == length(out), use_try = stop_on_error !=
      2L, keep_warning = keep_warning, keep_message = keep_message,
      output_handler = output_handler, include_timing = include_timing)
      14. evaluate::evaluate(...)
      13. evaluate(code, envir = env, new_device = FALSE, keep_warning = !isFALSE(options$warning),
      keep_message = !isFALSE(options$message), stop_on_error = if (options$error &&
      options$include) 0L else 2L, output_handler = knit_handlers(options$render,
      options))
      12. in_dir(input_dir(), evaluate(code, envir = env, new_device = FALSE,
      keep_warning = !isFALSE(options$warning), keep_message = !isFALSE(options$message),
      stop_on_error = if (options$error && options$include) 0L else 2L,
      output_handler = knit_handlers(options$render, options)))
      11. block_exec(params)
      10. call_block(x)
      9. process_group.block(group)
      8. process_group(group)
      7. withCallingHandlers(if (tangle) process_tangle(group) else process_group(group),
      error = function(e) {
      setwd(wd)
      cat(res, sep = "n", file = output %n% "") ...
      6. process_file(text, output)
      5. knitr::knit(knit_input, knit_output, envir = envir, quiet = quiet,
      encoding = encoding)
      4. render(input = report_dir, output_file = output_file, output_dir = output_dir,
      intermediates_dir = output_dir, params = list(data = data,
      report_config = config, response = y), ...)
      3. withCallingHandlers(expr, warning = function(w) invokeRestart("muffleWarning"))
      2. suppressWarnings(render(input = report_dir, output_file = output_file,
      output_dir = output_dir, intermediates_dir = output_dir,
      params = list(data = data, report_config = config, response = y),
      ...))
      1. create_report(df)


      Here's the session info:



      sessionInfo()
      R version 3.5.1 (2018-07-02)
      Platform: x86_64-w64-mingw32/x64 (64-bit)
      Running under: Windows >= 8 x64 (build 9200)

      Matrix products: default

      locale:
      [1] LC_COLLATE=English_United States.1252 LC_CTYPE=English_United States.1252
      [3] LC_MONETARY=English_United States.1252 LC_NUMERIC=C
      [5] LC_TIME=English_United States.1252

      attached base packages:
      [1] stats graphics grDevices utils datasets methods base

      other attached packages:
      [1] car_3.0-2 knitr_1.20 rmarkdown_1.10 data.table_1.11.8
      [5] DataExplorer_0.7.0 mosaic_1.4.0 Matrix_1.2-14 mosaicData_0.17.0
      [9] ggformula_0.9.0 ggstance_0.3.1 mdsr_0.1.6 Lahman_6.0-0
      [13] ISLR_1.2 forcats_0.3.0 stringr_1.3.1 dplyr_0.7.8
      [17] purrr_0.2.5 readr_1.1.1 tidyr_0.8.2 tibble_1.4.2
      [21] ggplot2_3.1.0 tidyverse_1.2.1 lattice_0.20-35 carData_3.0-2

      loaded via a namespace (and not attached):
      [1] ggdendro_0.1-20 httr_1.3.1 RMySQL_0.10.15 jsonlite_1.5 splines_3.5.1
      [6] modelr_0.1.2 assertthat_0.2.0 highr_0.7 cellranger_1.1.0 yaml_2.2.0
      [11] ggrepel_0.8.0 pillar_1.3.0 backports_1.1.2 glue_1.3.0 downloader_0.4
      [16] digest_0.6.18 rvest_0.3.2 colorspace_1.3-2 htmltools_0.3.6 plyr_1.8.4
      [21] pkgconfig_2.0.2 broom_0.5.0 haven_1.1.2 scales_1.0.0 openxlsx_4.1.0
      [26] rio_0.5.10 withr_2.1.2 lazyeval_0.2.1 cli_1.0.1 magrittr_1.5
      [31] crayon_1.3.4 readxl_1.1.0 evaluate_0.12 nlme_3.1-137 MASS_7.3-50
      [36] xml2_1.2.0 foreign_0.8-71 tools_3.5.1 hms_0.4.2 munsell_0.5.0
      [41] babynames_0.3.0 zip_1.0.0 bindrcpp_0.2.2 networkD3_0.4 compiler_3.5.1
      [46] rlang_0.3.0.1 grid_3.5.1 rstudioapi_0.8 htmlwidgets_1.3 igraph_1.2.2
      [51] labeling_0.3 mosaicCore_0.6.0 gtable_0.2.0 abind_1.4-5 DBI_1.0.0
      [56] curl_3.2 reshape2_1.4.3 R6_2.3.0 gridExtra_2.3 lubridate_1.7.4
      [61] rprojroot_1.3-2 bindr_0.1.1 stringi_1.2.4 parallel_3.5.1 Rcpp_1.0.0
      [66] dbplyr_1.2.2 tidyselect_0.2.5


      Here's the output of introduce(df_dummified) as requested in comments below:



      A tibble: 1 x 9  
      rows columns discrete_columns continuous_columns
      <int> <int> <int> <int>
      9527 489 2 487

      all_missing_columns total_missing_values
      <int> <int>
      0 7826

      complete_rows total_observations memory_usage
      <int> <int> <dbl>
      6889 4658703 18919440






      r






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Nov 29 '18 at 16:33







      Karl Baker

















      asked Nov 24 '18 at 23:28









      Karl BakerKarl Baker

      371215




      371215
























          2 Answers
          2






          active

          oldest

          votes


















          1














          You might also consider skipping the PCA part of the report, by removing "plot_prcomp" from the create_report() config.



          I had the same issue and this still created the rest of the report for me:






          library(DataExplorer)

          config <- list(
          "introduce" = list(),
          "plot_str" = list(
          "type" = "diagonal",
          "fontSize" = 35,
          "width" = 1000,
          "margin" = list("left" = 350, "right" = 250)
          ),
          "plot_missing" = list(),
          "plot_histogram" = list(),
          "plot_qq" = list(sampled_rows = 1000L),
          "plot_bar" = list(),
          "plot_correlation" = list("cor_args" = list("use" = "pairwise.complete.obs")),
          # "plot_prcomp" = list(),
          "plot_boxplot" = list(),
          "plot_scatterplot" = list(sampled_rows = 1000L)
          )

          create_report(df, config = config)








          share|improve this answer
























          • Great suggestion, that's exactly what I did so that I could at least see the rest of the DataExplorer output. Then I began combining and converting factors to logical variables. Haven't finished but hopefully this will allow me to run the PCA.

            – Karl Baker
            Nov 28 '18 at 23:22



















          1














          PCA can be applied only on numerical data. Consider only numeric columns for PCA, remove columns other than numeric.



          nums <- unlist(lapply(df, is.numeric))
          df_new <- df[, nums]


          Remove all the columns which have a constant variance.



          df_new <- df_new[, apply(df_new, 2, var) != 0]


          Reference: How to solve prcomp.default(): cannot rescale a constant/zero column to unit variance



          Now, run this. This should create a nice html report for you.



          create_report(df_new)





          share|improve this answer


























          • thanks for the explanation and the link. Since my df contains most of the interesting information in the factors, I'll need to do somehow convert them to numeric data for PCA. Is there a standard approach to convert categorical columns to numeric?

            – Karl Baker
            Nov 26 '18 at 19:22











          • You might also use dummy variables to convert categorical data to numeric. That might be an option.

            – RAJK
            Nov 26 '18 at 22:00











          • @KarlBaker Have you tried plot_prcomp(dummify(df))?

            – Boxuan
            Nov 28 '18 at 20:05











          • @Boxuan, that's new to me, sounds promising, but how do run it? I tried running it after loading DataExplorer but got a similar error as before: "cannot rescale a constant/zero column to unit variance Error in data.table(pc = paste0("PC", seq_along(pca$sdev)), var = var_exp, : Item 2 has no length. Provide at least one item (such as NA, NA_integer_ etc) to be repeated to match the 1 row in the longest column. Or, all columns can be 0 length, for insert()ing rows into."

            – Karl Baker
            Nov 28 '18 at 23:32











          • @Boxuan, I should note I was able to dummify the data (df_dummified <- dummify(df)), I just wasn't able to run the PCA (plot_prcomp(df_dummified)).

            – Karl Baker
            Nov 28 '18 at 23:43












          Your Answer






          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "1"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53463300%2fr-how-can-i-fix-dataexplorer-error-during-pca-item-2-has-no-length%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1














          You might also consider skipping the PCA part of the report, by removing "plot_prcomp" from the create_report() config.



          I had the same issue and this still created the rest of the report for me:






          library(DataExplorer)

          config <- list(
          "introduce" = list(),
          "plot_str" = list(
          "type" = "diagonal",
          "fontSize" = 35,
          "width" = 1000,
          "margin" = list("left" = 350, "right" = 250)
          ),
          "plot_missing" = list(),
          "plot_histogram" = list(),
          "plot_qq" = list(sampled_rows = 1000L),
          "plot_bar" = list(),
          "plot_correlation" = list("cor_args" = list("use" = "pairwise.complete.obs")),
          # "plot_prcomp" = list(),
          "plot_boxplot" = list(),
          "plot_scatterplot" = list(sampled_rows = 1000L)
          )

          create_report(df, config = config)








          share|improve this answer
























          • Great suggestion, that's exactly what I did so that I could at least see the rest of the DataExplorer output. Then I began combining and converting factors to logical variables. Haven't finished but hopefully this will allow me to run the PCA.

            – Karl Baker
            Nov 28 '18 at 23:22
















          1














          You might also consider skipping the PCA part of the report, by removing "plot_prcomp" from the create_report() config.



          I had the same issue and this still created the rest of the report for me:






          library(DataExplorer)

          config <- list(
          "introduce" = list(),
          "plot_str" = list(
          "type" = "diagonal",
          "fontSize" = 35,
          "width" = 1000,
          "margin" = list("left" = 350, "right" = 250)
          ),
          "plot_missing" = list(),
          "plot_histogram" = list(),
          "plot_qq" = list(sampled_rows = 1000L),
          "plot_bar" = list(),
          "plot_correlation" = list("cor_args" = list("use" = "pairwise.complete.obs")),
          # "plot_prcomp" = list(),
          "plot_boxplot" = list(),
          "plot_scatterplot" = list(sampled_rows = 1000L)
          )

          create_report(df, config = config)








          share|improve this answer
























          • Great suggestion, that's exactly what I did so that I could at least see the rest of the DataExplorer output. Then I began combining and converting factors to logical variables. Haven't finished but hopefully this will allow me to run the PCA.

            – Karl Baker
            Nov 28 '18 at 23:22














          1












          1








          1







          You might also consider skipping the PCA part of the report, by removing "plot_prcomp" from the create_report() config.



          I had the same issue and this still created the rest of the report for me:






          library(DataExplorer)

          config <- list(
          "introduce" = list(),
          "plot_str" = list(
          "type" = "diagonal",
          "fontSize" = 35,
          "width" = 1000,
          "margin" = list("left" = 350, "right" = 250)
          ),
          "plot_missing" = list(),
          "plot_histogram" = list(),
          "plot_qq" = list(sampled_rows = 1000L),
          "plot_bar" = list(),
          "plot_correlation" = list("cor_args" = list("use" = "pairwise.complete.obs")),
          # "plot_prcomp" = list(),
          "plot_boxplot" = list(),
          "plot_scatterplot" = list(sampled_rows = 1000L)
          )

          create_report(df, config = config)








          share|improve this answer













          You might also consider skipping the PCA part of the report, by removing "plot_prcomp" from the create_report() config.



          I had the same issue and this still created the rest of the report for me:






          library(DataExplorer)

          config <- list(
          "introduce" = list(),
          "plot_str" = list(
          "type" = "diagonal",
          "fontSize" = 35,
          "width" = 1000,
          "margin" = list("left" = 350, "right" = 250)
          ),
          "plot_missing" = list(),
          "plot_histogram" = list(),
          "plot_qq" = list(sampled_rows = 1000L),
          "plot_bar" = list(),
          "plot_correlation" = list("cor_args" = list("use" = "pairwise.complete.obs")),
          # "plot_prcomp" = list(),
          "plot_boxplot" = list(),
          "plot_scatterplot" = list(sampled_rows = 1000L)
          )

          create_report(df, config = config)








          library(DataExplorer)

          config <- list(
          "introduce" = list(),
          "plot_str" = list(
          "type" = "diagonal",
          "fontSize" = 35,
          "width" = 1000,
          "margin" = list("left" = 350, "right" = 250)
          ),
          "plot_missing" = list(),
          "plot_histogram" = list(),
          "plot_qq" = list(sampled_rows = 1000L),
          "plot_bar" = list(),
          "plot_correlation" = list("cor_args" = list("use" = "pairwise.complete.obs")),
          # "plot_prcomp" = list(),
          "plot_boxplot" = list(),
          "plot_scatterplot" = list(sampled_rows = 1000L)
          )

          create_report(df, config = config)





          library(DataExplorer)

          config <- list(
          "introduce" = list(),
          "plot_str" = list(
          "type" = "diagonal",
          "fontSize" = 35,
          "width" = 1000,
          "margin" = list("left" = 350, "right" = 250)
          ),
          "plot_missing" = list(),
          "plot_histogram" = list(),
          "plot_qq" = list(sampled_rows = 1000L),
          "plot_bar" = list(),
          "plot_correlation" = list("cor_args" = list("use" = "pairwise.complete.obs")),
          # "plot_prcomp" = list(),
          "plot_boxplot" = list(),
          "plot_scatterplot" = list(sampled_rows = 1000L)
          )

          create_report(df, config = config)






          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered Nov 28 '18 at 13:03









          Dennis van den BergDennis van den Berg

          262




          262













          • Great suggestion, that's exactly what I did so that I could at least see the rest of the DataExplorer output. Then I began combining and converting factors to logical variables. Haven't finished but hopefully this will allow me to run the PCA.

            – Karl Baker
            Nov 28 '18 at 23:22



















          • Great suggestion, that's exactly what I did so that I could at least see the rest of the DataExplorer output. Then I began combining and converting factors to logical variables. Haven't finished but hopefully this will allow me to run the PCA.

            – Karl Baker
            Nov 28 '18 at 23:22

















          Great suggestion, that's exactly what I did so that I could at least see the rest of the DataExplorer output. Then I began combining and converting factors to logical variables. Haven't finished but hopefully this will allow me to run the PCA.

          – Karl Baker
          Nov 28 '18 at 23:22





          Great suggestion, that's exactly what I did so that I could at least see the rest of the DataExplorer output. Then I began combining and converting factors to logical variables. Haven't finished but hopefully this will allow me to run the PCA.

          – Karl Baker
          Nov 28 '18 at 23:22













          1














          PCA can be applied only on numerical data. Consider only numeric columns for PCA, remove columns other than numeric.



          nums <- unlist(lapply(df, is.numeric))
          df_new <- df[, nums]


          Remove all the columns which have a constant variance.



          df_new <- df_new[, apply(df_new, 2, var) != 0]


          Reference: How to solve prcomp.default(): cannot rescale a constant/zero column to unit variance



          Now, run this. This should create a nice html report for you.



          create_report(df_new)





          share|improve this answer


























          • thanks for the explanation and the link. Since my df contains most of the interesting information in the factors, I'll need to do somehow convert them to numeric data for PCA. Is there a standard approach to convert categorical columns to numeric?

            – Karl Baker
            Nov 26 '18 at 19:22











          • You might also use dummy variables to convert categorical data to numeric. That might be an option.

            – RAJK
            Nov 26 '18 at 22:00











          • @KarlBaker Have you tried plot_prcomp(dummify(df))?

            – Boxuan
            Nov 28 '18 at 20:05











          • @Boxuan, that's new to me, sounds promising, but how do run it? I tried running it after loading DataExplorer but got a similar error as before: "cannot rescale a constant/zero column to unit variance Error in data.table(pc = paste0("PC", seq_along(pca$sdev)), var = var_exp, : Item 2 has no length. Provide at least one item (such as NA, NA_integer_ etc) to be repeated to match the 1 row in the longest column. Or, all columns can be 0 length, for insert()ing rows into."

            – Karl Baker
            Nov 28 '18 at 23:32











          • @Boxuan, I should note I was able to dummify the data (df_dummified <- dummify(df)), I just wasn't able to run the PCA (plot_prcomp(df_dummified)).

            – Karl Baker
            Nov 28 '18 at 23:43
















          1














          PCA can be applied only on numerical data. Consider only numeric columns for PCA, remove columns other than numeric.



          nums <- unlist(lapply(df, is.numeric))
          df_new <- df[, nums]


          Remove all the columns which have a constant variance.



          df_new <- df_new[, apply(df_new, 2, var) != 0]


          Reference: How to solve prcomp.default(): cannot rescale a constant/zero column to unit variance



          Now, run this. This should create a nice html report for you.



          create_report(df_new)





          share|improve this answer


























          • thanks for the explanation and the link. Since my df contains most of the interesting information in the factors, I'll need to do somehow convert them to numeric data for PCA. Is there a standard approach to convert categorical columns to numeric?

            – Karl Baker
            Nov 26 '18 at 19:22











          • You might also use dummy variables to convert categorical data to numeric. That might be an option.

            – RAJK
            Nov 26 '18 at 22:00











          • @KarlBaker Have you tried plot_prcomp(dummify(df))?

            – Boxuan
            Nov 28 '18 at 20:05











          • @Boxuan, that's new to me, sounds promising, but how do run it? I tried running it after loading DataExplorer but got a similar error as before: "cannot rescale a constant/zero column to unit variance Error in data.table(pc = paste0("PC", seq_along(pca$sdev)), var = var_exp, : Item 2 has no length. Provide at least one item (such as NA, NA_integer_ etc) to be repeated to match the 1 row in the longest column. Or, all columns can be 0 length, for insert()ing rows into."

            – Karl Baker
            Nov 28 '18 at 23:32











          • @Boxuan, I should note I was able to dummify the data (df_dummified <- dummify(df)), I just wasn't able to run the PCA (plot_prcomp(df_dummified)).

            – Karl Baker
            Nov 28 '18 at 23:43














          1












          1








          1







          PCA can be applied only on numerical data. Consider only numeric columns for PCA, remove columns other than numeric.



          nums <- unlist(lapply(df, is.numeric))
          df_new <- df[, nums]


          Remove all the columns which have a constant variance.



          df_new <- df_new[, apply(df_new, 2, var) != 0]


          Reference: How to solve prcomp.default(): cannot rescale a constant/zero column to unit variance



          Now, run this. This should create a nice html report for you.



          create_report(df_new)





          share|improve this answer















          PCA can be applied only on numerical data. Consider only numeric columns for PCA, remove columns other than numeric.



          nums <- unlist(lapply(df, is.numeric))
          df_new <- df[, nums]


          Remove all the columns which have a constant variance.



          df_new <- df_new[, apply(df_new, 2, var) != 0]


          Reference: How to solve prcomp.default(): cannot rescale a constant/zero column to unit variance



          Now, run this. This should create a nice html report for you.



          create_report(df_new)






          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited Dec 1 '18 at 0:18









          Boxuan

          1,95122358




          1,95122358










          answered Nov 25 '18 at 20:12









          RAJKRAJK

          1067




          1067













          • thanks for the explanation and the link. Since my df contains most of the interesting information in the factors, I'll need to do somehow convert them to numeric data for PCA. Is there a standard approach to convert categorical columns to numeric?

            – Karl Baker
            Nov 26 '18 at 19:22











          • You might also use dummy variables to convert categorical data to numeric. That might be an option.

            – RAJK
            Nov 26 '18 at 22:00











          • @KarlBaker Have you tried plot_prcomp(dummify(df))?

            – Boxuan
            Nov 28 '18 at 20:05











          • @Boxuan, that's new to me, sounds promising, but how do run it? I tried running it after loading DataExplorer but got a similar error as before: "cannot rescale a constant/zero column to unit variance Error in data.table(pc = paste0("PC", seq_along(pca$sdev)), var = var_exp, : Item 2 has no length. Provide at least one item (such as NA, NA_integer_ etc) to be repeated to match the 1 row in the longest column. Or, all columns can be 0 length, for insert()ing rows into."

            – Karl Baker
            Nov 28 '18 at 23:32











          • @Boxuan, I should note I was able to dummify the data (df_dummified <- dummify(df)), I just wasn't able to run the PCA (plot_prcomp(df_dummified)).

            – Karl Baker
            Nov 28 '18 at 23:43



















          • thanks for the explanation and the link. Since my df contains most of the interesting information in the factors, I'll need to do somehow convert them to numeric data for PCA. Is there a standard approach to convert categorical columns to numeric?

            – Karl Baker
            Nov 26 '18 at 19:22











          • You might also use dummy variables to convert categorical data to numeric. That might be an option.

            – RAJK
            Nov 26 '18 at 22:00











          • @KarlBaker Have you tried plot_prcomp(dummify(df))?

            – Boxuan
            Nov 28 '18 at 20:05











          • @Boxuan, that's new to me, sounds promising, but how do run it? I tried running it after loading DataExplorer but got a similar error as before: "cannot rescale a constant/zero column to unit variance Error in data.table(pc = paste0("PC", seq_along(pca$sdev)), var = var_exp, : Item 2 has no length. Provide at least one item (such as NA, NA_integer_ etc) to be repeated to match the 1 row in the longest column. Or, all columns can be 0 length, for insert()ing rows into."

            – Karl Baker
            Nov 28 '18 at 23:32











          • @Boxuan, I should note I was able to dummify the data (df_dummified <- dummify(df)), I just wasn't able to run the PCA (plot_prcomp(df_dummified)).

            – Karl Baker
            Nov 28 '18 at 23:43

















          thanks for the explanation and the link. Since my df contains most of the interesting information in the factors, I'll need to do somehow convert them to numeric data for PCA. Is there a standard approach to convert categorical columns to numeric?

          – Karl Baker
          Nov 26 '18 at 19:22





          thanks for the explanation and the link. Since my df contains most of the interesting information in the factors, I'll need to do somehow convert them to numeric data for PCA. Is there a standard approach to convert categorical columns to numeric?

          – Karl Baker
          Nov 26 '18 at 19:22













          You might also use dummy variables to convert categorical data to numeric. That might be an option.

          – RAJK
          Nov 26 '18 at 22:00





          You might also use dummy variables to convert categorical data to numeric. That might be an option.

          – RAJK
          Nov 26 '18 at 22:00













          @KarlBaker Have you tried plot_prcomp(dummify(df))?

          – Boxuan
          Nov 28 '18 at 20:05





          @KarlBaker Have you tried plot_prcomp(dummify(df))?

          – Boxuan
          Nov 28 '18 at 20:05













          @Boxuan, that's new to me, sounds promising, but how do run it? I tried running it after loading DataExplorer but got a similar error as before: "cannot rescale a constant/zero column to unit variance Error in data.table(pc = paste0("PC", seq_along(pca$sdev)), var = var_exp, : Item 2 has no length. Provide at least one item (such as NA, NA_integer_ etc) to be repeated to match the 1 row in the longest column. Or, all columns can be 0 length, for insert()ing rows into."

          – Karl Baker
          Nov 28 '18 at 23:32





          @Boxuan, that's new to me, sounds promising, but how do run it? I tried running it after loading DataExplorer but got a similar error as before: "cannot rescale a constant/zero column to unit variance Error in data.table(pc = paste0("PC", seq_along(pca$sdev)), var = var_exp, : Item 2 has no length. Provide at least one item (such as NA, NA_integer_ etc) to be repeated to match the 1 row in the longest column. Or, all columns can be 0 length, for insert()ing rows into."

          – Karl Baker
          Nov 28 '18 at 23:32













          @Boxuan, I should note I was able to dummify the data (df_dummified <- dummify(df)), I just wasn't able to run the PCA (plot_prcomp(df_dummified)).

          – Karl Baker
          Nov 28 '18 at 23:43





          @Boxuan, I should note I was able to dummify the data (df_dummified <- dummify(df)), I just wasn't able to run the PCA (plot_prcomp(df_dummified)).

          – Karl Baker
          Nov 28 '18 at 23:43


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53463300%2fr-how-can-i-fix-dataexplorer-error-during-pca-item-2-has-no-length%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          這個網誌中的熱門文章

          Xamarin.form Move up view when keyboard appear

          Post-Redirect-Get with Spring WebFlux and Thymeleaf

          Anylogic : not able to use stopDelay()