Apache Airflow scheduler does not trigger DAG at schedule time
When I schedule DAGs to run at a specific time everyday, the DAG execution does not take place at all.
However, when I restart Airflow webserver and scheduler, the DAGs execute once on the scheduled time for that particular day and do not execute from the next day onwards.
I am using Airflow version v1.7.1.3 with python 2.7.6.
Here goes the DAG code:
from airflow import DAG
from airflow.operators.bash_operator import BashOperator
from datetime import datetime, timedelta
import time
n=time.strftime("%Y,%m,%d")
v=datetime.strptime(n,"%Y,%m,%d")
default_args = {
'owner': 'airflow',
'depends_on_past': True,
'start_date': v,
'email': ['airflow@airflow.com'],
'email_on_failure': False,
'email_on_retry': False,
'retries': 1,
'retry_delay': timedelta(minutes=10),
}
dag = DAG('dag_user_answer_attempts', default_args=default_args, schedule_interval='03 02 * * *')
# t1, t2 and t3 are examples of tasks created by instantiating operators
t1 = BashOperator(
task_id='user_answer_attempts',
bash_command='python /home/ubuntu/bigcrons/appengine-flask-skeleton-master/useranswerattemptsgen.py',
dag=dag)
Am I doing something wrong?
python apache cron directed-acyclic-graphs airflow
add a comment |
When I schedule DAGs to run at a specific time everyday, the DAG execution does not take place at all.
However, when I restart Airflow webserver and scheduler, the DAGs execute once on the scheduled time for that particular day and do not execute from the next day onwards.
I am using Airflow version v1.7.1.3 with python 2.7.6.
Here goes the DAG code:
from airflow import DAG
from airflow.operators.bash_operator import BashOperator
from datetime import datetime, timedelta
import time
n=time.strftime("%Y,%m,%d")
v=datetime.strptime(n,"%Y,%m,%d")
default_args = {
'owner': 'airflow',
'depends_on_past': True,
'start_date': v,
'email': ['airflow@airflow.com'],
'email_on_failure': False,
'email_on_retry': False,
'retries': 1,
'retry_delay': timedelta(minutes=10),
}
dag = DAG('dag_user_answer_attempts', default_args=default_args, schedule_interval='03 02 * * *')
# t1, t2 and t3 are examples of tasks created by instantiating operators
t1 = BashOperator(
task_id='user_answer_attempts',
bash_command='python /home/ubuntu/bigcrons/appengine-flask-skeleton-master/useranswerattemptsgen.py',
dag=dag)
Am I doing something wrong?
python apache cron directed-acyclic-graphs airflow
add a comment |
When I schedule DAGs to run at a specific time everyday, the DAG execution does not take place at all.
However, when I restart Airflow webserver and scheduler, the DAGs execute once on the scheduled time for that particular day and do not execute from the next day onwards.
I am using Airflow version v1.7.1.3 with python 2.7.6.
Here goes the DAG code:
from airflow import DAG
from airflow.operators.bash_operator import BashOperator
from datetime import datetime, timedelta
import time
n=time.strftime("%Y,%m,%d")
v=datetime.strptime(n,"%Y,%m,%d")
default_args = {
'owner': 'airflow',
'depends_on_past': True,
'start_date': v,
'email': ['airflow@airflow.com'],
'email_on_failure': False,
'email_on_retry': False,
'retries': 1,
'retry_delay': timedelta(minutes=10),
}
dag = DAG('dag_user_answer_attempts', default_args=default_args, schedule_interval='03 02 * * *')
# t1, t2 and t3 are examples of tasks created by instantiating operators
t1 = BashOperator(
task_id='user_answer_attempts',
bash_command='python /home/ubuntu/bigcrons/appengine-flask-skeleton-master/useranswerattemptsgen.py',
dag=dag)
Am I doing something wrong?
python apache cron directed-acyclic-graphs airflow
When I schedule DAGs to run at a specific time everyday, the DAG execution does not take place at all.
However, when I restart Airflow webserver and scheduler, the DAGs execute once on the scheduled time for that particular day and do not execute from the next day onwards.
I am using Airflow version v1.7.1.3 with python 2.7.6.
Here goes the DAG code:
from airflow import DAG
from airflow.operators.bash_operator import BashOperator
from datetime import datetime, timedelta
import time
n=time.strftime("%Y,%m,%d")
v=datetime.strptime(n,"%Y,%m,%d")
default_args = {
'owner': 'airflow',
'depends_on_past': True,
'start_date': v,
'email': ['airflow@airflow.com'],
'email_on_failure': False,
'email_on_retry': False,
'retries': 1,
'retry_delay': timedelta(minutes=10),
}
dag = DAG('dag_user_answer_attempts', default_args=default_args, schedule_interval='03 02 * * *')
# t1, t2 and t3 are examples of tasks created by instantiating operators
t1 = BashOperator(
task_id='user_answer_attempts',
bash_command='python /home/ubuntu/bigcrons/appengine-flask-skeleton-master/useranswerattemptsgen.py',
dag=dag)
Am I doing something wrong?
python apache cron directed-acyclic-graphs airflow
python apache cron directed-acyclic-graphs airflow
asked Nov 21 '16 at 6:32
Prabhjot
117210
117210
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
Your issue is the start_date
being set for the current time. Airflow runs jobs at the end of an interval, not the beginning. This means that the first run of your job is going to be after the first interval.
Example:
You make a dag and put it live in Airflow at midnight. Today (20XX-01-01 00:00:00) is also the start_date, but it is hard-coded ("start_date":datetime(20XX,1,1)
). The schedule interval is daily, like yours (3 2 * * *
).
The first time this dag will be queued for execution is 20XX-01-02 02:03:00, because that is when the interval period ends. If you look at your dag being run at that time, it should have a started datetime of roughly one day after the schedule_date.
You can solve this by having your start_date
hard-coded to a date or by making sure that the dynamic date is further in the past than the interval between executions (In your case, 2 days would be plenty). Airflow recommends you use static start_dates in case you need to re-run jobs or backfill (or end a dag).
For more information on backfilling (the opposite side of this common stackoverflow question), check the docs or this question:
Airflow not scheduling Correctly Python
add a comment |
From the schedule your DAG should run everyday at 02:03 AM. My suspicion is the start_date might be impacting it. Can you hardcode that to something like 'start_date': datetime.datetime(2016, 11, 01) and try.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f40714087%2fapache-airflow-scheduler-does-not-trigger-dag-at-schedule-time%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
Your issue is the start_date
being set for the current time. Airflow runs jobs at the end of an interval, not the beginning. This means that the first run of your job is going to be after the first interval.
Example:
You make a dag and put it live in Airflow at midnight. Today (20XX-01-01 00:00:00) is also the start_date, but it is hard-coded ("start_date":datetime(20XX,1,1)
). The schedule interval is daily, like yours (3 2 * * *
).
The first time this dag will be queued for execution is 20XX-01-02 02:03:00, because that is when the interval period ends. If you look at your dag being run at that time, it should have a started datetime of roughly one day after the schedule_date.
You can solve this by having your start_date
hard-coded to a date or by making sure that the dynamic date is further in the past than the interval between executions (In your case, 2 days would be plenty). Airflow recommends you use static start_dates in case you need to re-run jobs or backfill (or end a dag).
For more information on backfilling (the opposite side of this common stackoverflow question), check the docs or this question:
Airflow not scheduling Correctly Python
add a comment |
Your issue is the start_date
being set for the current time. Airflow runs jobs at the end of an interval, not the beginning. This means that the first run of your job is going to be after the first interval.
Example:
You make a dag and put it live in Airflow at midnight. Today (20XX-01-01 00:00:00) is also the start_date, but it is hard-coded ("start_date":datetime(20XX,1,1)
). The schedule interval is daily, like yours (3 2 * * *
).
The first time this dag will be queued for execution is 20XX-01-02 02:03:00, because that is when the interval period ends. If you look at your dag being run at that time, it should have a started datetime of roughly one day after the schedule_date.
You can solve this by having your start_date
hard-coded to a date or by making sure that the dynamic date is further in the past than the interval between executions (In your case, 2 days would be plenty). Airflow recommends you use static start_dates in case you need to re-run jobs or backfill (or end a dag).
For more information on backfilling (the opposite side of this common stackoverflow question), check the docs or this question:
Airflow not scheduling Correctly Python
add a comment |
Your issue is the start_date
being set for the current time. Airflow runs jobs at the end of an interval, not the beginning. This means that the first run of your job is going to be after the first interval.
Example:
You make a dag and put it live in Airflow at midnight. Today (20XX-01-01 00:00:00) is also the start_date, but it is hard-coded ("start_date":datetime(20XX,1,1)
). The schedule interval is daily, like yours (3 2 * * *
).
The first time this dag will be queued for execution is 20XX-01-02 02:03:00, because that is when the interval period ends. If you look at your dag being run at that time, it should have a started datetime of roughly one day after the schedule_date.
You can solve this by having your start_date
hard-coded to a date or by making sure that the dynamic date is further in the past than the interval between executions (In your case, 2 days would be plenty). Airflow recommends you use static start_dates in case you need to re-run jobs or backfill (or end a dag).
For more information on backfilling (the opposite side of this common stackoverflow question), check the docs or this question:
Airflow not scheduling Correctly Python
Your issue is the start_date
being set for the current time. Airflow runs jobs at the end of an interval, not the beginning. This means that the first run of your job is going to be after the first interval.
Example:
You make a dag and put it live in Airflow at midnight. Today (20XX-01-01 00:00:00) is also the start_date, but it is hard-coded ("start_date":datetime(20XX,1,1)
). The schedule interval is daily, like yours (3 2 * * *
).
The first time this dag will be queued for execution is 20XX-01-02 02:03:00, because that is when the interval period ends. If you look at your dag being run at that time, it should have a started datetime of roughly one day after the schedule_date.
You can solve this by having your start_date
hard-coded to a date or by making sure that the dynamic date is further in the past than the interval between executions (In your case, 2 days would be plenty). Airflow recommends you use static start_dates in case you need to re-run jobs or backfill (or end a dag).
For more information on backfilling (the opposite side of this common stackoverflow question), check the docs or this question:
Airflow not scheduling Correctly Python
edited May 23 '17 at 12:34
Community♦
11
11
answered May 3 '17 at 22:29
apathyman
51149
51149
add a comment |
add a comment |
From the schedule your DAG should run everyday at 02:03 AM. My suspicion is the start_date might be impacting it. Can you hardcode that to something like 'start_date': datetime.datetime(2016, 11, 01) and try.
add a comment |
From the schedule your DAG should run everyday at 02:03 AM. My suspicion is the start_date might be impacting it. Can you hardcode that to something like 'start_date': datetime.datetime(2016, 11, 01) and try.
add a comment |
From the schedule your DAG should run everyday at 02:03 AM. My suspicion is the start_date might be impacting it. Can you hardcode that to something like 'start_date': datetime.datetime(2016, 11, 01) and try.
From the schedule your DAG should run everyday at 02:03 AM. My suspicion is the start_date might be impacting it. Can you hardcode that to something like 'start_date': datetime.datetime(2016, 11, 01) and try.
answered Nov 23 '16 at 20:00
kvb
150210
150210
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f40714087%2fapache-airflow-scheduler-does-not-trigger-dag-at-schedule-time%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown