Python Pandas: Compare two CSV files and delete lines from both the file by matching a column












1















We need to delete lines from both of the files if the value of the first column is not present in the other file.



Lets consider two CSV files:



file1.csv:
yrdi_391 111 1.11 1.0 1.1 111.0
yfyrn_9132 222 2.22 2.0 2.2 222.0
kdkfke_392 999 9.99 9.0 9.9 999.0
hfeisk_3 333 3.33 3.0 3.3 333.0

file2.csv:
yrdi_391 444 4.44 4.0 4.4 444.0
yfyrn_9132 555 5.55 5.0 5.5 555.0
hfeisk_3 666 6.66 6.0 6.6 666.0
fhedn_271 888 8.88 8.0 8.8 888.0


Now, we need to delete entire line starting with kdkfke_392 from the file1.csv as it's not present therein file2.csv.



On the other hand, we need to delete the entire line starting with fhedn_271, as it's not present in file1.csv.



Expected result:



file1.csv:
yrdi_391 111 1.11 1.0 1.1 111.0
yfyrn_9132 222 2.22 2.0 2.2 222.0
hfeisk_3 333 3.33 3.0 3.3 333.0

file2.csv:
yrdi_391 444 4.44 4.0 4.4 444.0
yfyrn_9132 555 5.55 5.0 5.5 555.0
hfeisk_3 666 6.66 6.0 6.6 666.0


As of now, the lines in file1.csv and file2.csv are not sorted.
If required, we may do the sorting first and then apply the deletion.



Pandas CVS related manipulations are preferred as in both of the files we have headers and need to keep them.



Newbie in python scripting!



Any help will be highly appreciated!










share|improve this question























  • Read about merge in pandas..

    – Rahul Agarwal
    Nov 13 '18 at 14:48











  • @RahulAgarwal I do not want to join these files. Need to update them while keeping them separated.

    – RandomCoder
    Nov 13 '18 at 14:52
















1















We need to delete lines from both of the files if the value of the first column is not present in the other file.



Lets consider two CSV files:



file1.csv:
yrdi_391 111 1.11 1.0 1.1 111.0
yfyrn_9132 222 2.22 2.0 2.2 222.0
kdkfke_392 999 9.99 9.0 9.9 999.0
hfeisk_3 333 3.33 3.0 3.3 333.0

file2.csv:
yrdi_391 444 4.44 4.0 4.4 444.0
yfyrn_9132 555 5.55 5.0 5.5 555.0
hfeisk_3 666 6.66 6.0 6.6 666.0
fhedn_271 888 8.88 8.0 8.8 888.0


Now, we need to delete entire line starting with kdkfke_392 from the file1.csv as it's not present therein file2.csv.



On the other hand, we need to delete the entire line starting with fhedn_271, as it's not present in file1.csv.



Expected result:



file1.csv:
yrdi_391 111 1.11 1.0 1.1 111.0
yfyrn_9132 222 2.22 2.0 2.2 222.0
hfeisk_3 333 3.33 3.0 3.3 333.0

file2.csv:
yrdi_391 444 4.44 4.0 4.4 444.0
yfyrn_9132 555 5.55 5.0 5.5 555.0
hfeisk_3 666 6.66 6.0 6.6 666.0


As of now, the lines in file1.csv and file2.csv are not sorted.
If required, we may do the sorting first and then apply the deletion.



Pandas CVS related manipulations are preferred as in both of the files we have headers and need to keep them.



Newbie in python scripting!



Any help will be highly appreciated!










share|improve this question























  • Read about merge in pandas..

    – Rahul Agarwal
    Nov 13 '18 at 14:48











  • @RahulAgarwal I do not want to join these files. Need to update them while keeping them separated.

    – RandomCoder
    Nov 13 '18 at 14:52














1












1








1








We need to delete lines from both of the files if the value of the first column is not present in the other file.



Lets consider two CSV files:



file1.csv:
yrdi_391 111 1.11 1.0 1.1 111.0
yfyrn_9132 222 2.22 2.0 2.2 222.0
kdkfke_392 999 9.99 9.0 9.9 999.0
hfeisk_3 333 3.33 3.0 3.3 333.0

file2.csv:
yrdi_391 444 4.44 4.0 4.4 444.0
yfyrn_9132 555 5.55 5.0 5.5 555.0
hfeisk_3 666 6.66 6.0 6.6 666.0
fhedn_271 888 8.88 8.0 8.8 888.0


Now, we need to delete entire line starting with kdkfke_392 from the file1.csv as it's not present therein file2.csv.



On the other hand, we need to delete the entire line starting with fhedn_271, as it's not present in file1.csv.



Expected result:



file1.csv:
yrdi_391 111 1.11 1.0 1.1 111.0
yfyrn_9132 222 2.22 2.0 2.2 222.0
hfeisk_3 333 3.33 3.0 3.3 333.0

file2.csv:
yrdi_391 444 4.44 4.0 4.4 444.0
yfyrn_9132 555 5.55 5.0 5.5 555.0
hfeisk_3 666 6.66 6.0 6.6 666.0


As of now, the lines in file1.csv and file2.csv are not sorted.
If required, we may do the sorting first and then apply the deletion.



Pandas CVS related manipulations are preferred as in both of the files we have headers and need to keep them.



Newbie in python scripting!



Any help will be highly appreciated!










share|improve this question














We need to delete lines from both of the files if the value of the first column is not present in the other file.



Lets consider two CSV files:



file1.csv:
yrdi_391 111 1.11 1.0 1.1 111.0
yfyrn_9132 222 2.22 2.0 2.2 222.0
kdkfke_392 999 9.99 9.0 9.9 999.0
hfeisk_3 333 3.33 3.0 3.3 333.0

file2.csv:
yrdi_391 444 4.44 4.0 4.4 444.0
yfyrn_9132 555 5.55 5.0 5.5 555.0
hfeisk_3 666 6.66 6.0 6.6 666.0
fhedn_271 888 8.88 8.0 8.8 888.0


Now, we need to delete entire line starting with kdkfke_392 from the file1.csv as it's not present therein file2.csv.



On the other hand, we need to delete the entire line starting with fhedn_271, as it's not present in file1.csv.



Expected result:



file1.csv:
yrdi_391 111 1.11 1.0 1.1 111.0
yfyrn_9132 222 2.22 2.0 2.2 222.0
hfeisk_3 333 3.33 3.0 3.3 333.0

file2.csv:
yrdi_391 444 4.44 4.0 4.4 444.0
yfyrn_9132 555 5.55 5.0 5.5 555.0
hfeisk_3 666 6.66 6.0 6.6 666.0


As of now, the lines in file1.csv and file2.csv are not sorted.
If required, we may do the sorting first and then apply the deletion.



Pandas CVS related manipulations are preferred as in both of the files we have headers and need to keep them.



Newbie in python scripting!



Any help will be highly appreciated!







python python-3.x pandas csv file-manipulation






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked Nov 13 '18 at 14:44









RandomCoderRandomCoder

395




395













  • Read about merge in pandas..

    – Rahul Agarwal
    Nov 13 '18 at 14:48











  • @RahulAgarwal I do not want to join these files. Need to update them while keeping them separated.

    – RandomCoder
    Nov 13 '18 at 14:52



















  • Read about merge in pandas..

    – Rahul Agarwal
    Nov 13 '18 at 14:48











  • @RahulAgarwal I do not want to join these files. Need to update them while keeping them separated.

    – RandomCoder
    Nov 13 '18 at 14:52

















Read about merge in pandas..

– Rahul Agarwal
Nov 13 '18 at 14:48





Read about merge in pandas..

– Rahul Agarwal
Nov 13 '18 at 14:48













@RahulAgarwal I do not want to join these files. Need to update them while keeping them separated.

– RandomCoder
Nov 13 '18 at 14:52





@RahulAgarwal I do not want to join these files. Need to update them while keeping them separated.

– RandomCoder
Nov 13 '18 at 14:52












1 Answer
1






active

oldest

votes


















1














You can use isin().



print (df)

0 1 2 3 4 5
0 yrdi_391 111 1.11 1.0 1.1 111.0
1 yfyrn_9132 222 2.22 2.0 2.2 222.0
2 kdkfke_392 999 9.99 9.0 9.9 999.0
3 hfeisk_3 333 3.33 3.0 3.3 333.0

print (df1)

0 1 2 3 4 5
0 yrdi_391 444 4.44 4.0 4.4 444.0
1 yfyrn_9132 555 5.55 5.0 5.5 555.0
2 hfeisk_3 666 6.66 6.0 6.6 666.0
3 fhedn_271 888 8.88 8.0 8.8 888.0




csv_df = df[df[0].isin(df1[0])]

print (csv_df)
0 1 2 3 4 5
0 yrdi_391 111 1.11 1.0 1.1 111.0
1 yfyrn_9132 222 2.22 2.0 2.2 222.0
3 hfeisk_3 333 3.33 3.0 3.3 333.0

csv_df1 = df1[df1[0].isin(df[0])]

print (csv_df1)
0 1 2 3 4 5
0 yrdi_391 444 4.44 4.0 4.4 444.0
1 yfyrn_9132 555 5.55 5.0 5.5 555.0
2 hfeisk_3 666 6.66 6.0 6.6 666.0

csv_df.to_csv('temp.csv', index=False)
csv_df1.to_csv('temp1.csv', index=False)





share|improve this answer


























  • Giving a couple of exceptions!

    – RandomCoder
    Nov 13 '18 at 16:04











  • Traceback (most recent call last): File "/python3.6/site-packages/pandas/core/indexes/base.py", line 2525, in get_loc return self._engine.get_loc(key) File "pandas/_libs/index.pyx", line 117, in pandas._libs.index.IndexEngine.get_loc File "pandas/_libs/index.pyx", line 139, in pandas._libs.index.IndexEngine.get_loc File "pandas/_libs/hashtable_class_helper.pxi", line 1265, in pandas._libs.hashtable.PyObjectHashTable.get_item File "pandas/_libs/hashtable_class_helper.pxi", line 1273, in pandas._libs.hashtable.PyObjectHashTable.get_item KeyError: 0 and another one

    – RandomCoder
    Nov 13 '18 at 16:16











  • @RandomCoder You have to use your first column name which you want to check in place of 0 something like df[df[your col name].isin(df1[your col name])]

    – Abhi
    Nov 13 '18 at 16:27








  • 1





    It worked! Thanks!

    – RandomCoder
    Nov 13 '18 at 16:32











  • @RandomCoder Your're welcome. :)

    – Abhi
    Nov 13 '18 at 16:33











Your Answer






StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53283531%2fpython-pandas-compare-two-csv-files-and-delete-lines-from-both-the-file-by-matc%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1














You can use isin().



print (df)

0 1 2 3 4 5
0 yrdi_391 111 1.11 1.0 1.1 111.0
1 yfyrn_9132 222 2.22 2.0 2.2 222.0
2 kdkfke_392 999 9.99 9.0 9.9 999.0
3 hfeisk_3 333 3.33 3.0 3.3 333.0

print (df1)

0 1 2 3 4 5
0 yrdi_391 444 4.44 4.0 4.4 444.0
1 yfyrn_9132 555 5.55 5.0 5.5 555.0
2 hfeisk_3 666 6.66 6.0 6.6 666.0
3 fhedn_271 888 8.88 8.0 8.8 888.0




csv_df = df[df[0].isin(df1[0])]

print (csv_df)
0 1 2 3 4 5
0 yrdi_391 111 1.11 1.0 1.1 111.0
1 yfyrn_9132 222 2.22 2.0 2.2 222.0
3 hfeisk_3 333 3.33 3.0 3.3 333.0

csv_df1 = df1[df1[0].isin(df[0])]

print (csv_df1)
0 1 2 3 4 5
0 yrdi_391 444 4.44 4.0 4.4 444.0
1 yfyrn_9132 555 5.55 5.0 5.5 555.0
2 hfeisk_3 666 6.66 6.0 6.6 666.0

csv_df.to_csv('temp.csv', index=False)
csv_df1.to_csv('temp1.csv', index=False)





share|improve this answer


























  • Giving a couple of exceptions!

    – RandomCoder
    Nov 13 '18 at 16:04











  • Traceback (most recent call last): File "/python3.6/site-packages/pandas/core/indexes/base.py", line 2525, in get_loc return self._engine.get_loc(key) File "pandas/_libs/index.pyx", line 117, in pandas._libs.index.IndexEngine.get_loc File "pandas/_libs/index.pyx", line 139, in pandas._libs.index.IndexEngine.get_loc File "pandas/_libs/hashtable_class_helper.pxi", line 1265, in pandas._libs.hashtable.PyObjectHashTable.get_item File "pandas/_libs/hashtable_class_helper.pxi", line 1273, in pandas._libs.hashtable.PyObjectHashTable.get_item KeyError: 0 and another one

    – RandomCoder
    Nov 13 '18 at 16:16











  • @RandomCoder You have to use your first column name which you want to check in place of 0 something like df[df[your col name].isin(df1[your col name])]

    – Abhi
    Nov 13 '18 at 16:27








  • 1





    It worked! Thanks!

    – RandomCoder
    Nov 13 '18 at 16:32











  • @RandomCoder Your're welcome. :)

    – Abhi
    Nov 13 '18 at 16:33
















1














You can use isin().



print (df)

0 1 2 3 4 5
0 yrdi_391 111 1.11 1.0 1.1 111.0
1 yfyrn_9132 222 2.22 2.0 2.2 222.0
2 kdkfke_392 999 9.99 9.0 9.9 999.0
3 hfeisk_3 333 3.33 3.0 3.3 333.0

print (df1)

0 1 2 3 4 5
0 yrdi_391 444 4.44 4.0 4.4 444.0
1 yfyrn_9132 555 5.55 5.0 5.5 555.0
2 hfeisk_3 666 6.66 6.0 6.6 666.0
3 fhedn_271 888 8.88 8.0 8.8 888.0




csv_df = df[df[0].isin(df1[0])]

print (csv_df)
0 1 2 3 4 5
0 yrdi_391 111 1.11 1.0 1.1 111.0
1 yfyrn_9132 222 2.22 2.0 2.2 222.0
3 hfeisk_3 333 3.33 3.0 3.3 333.0

csv_df1 = df1[df1[0].isin(df[0])]

print (csv_df1)
0 1 2 3 4 5
0 yrdi_391 444 4.44 4.0 4.4 444.0
1 yfyrn_9132 555 5.55 5.0 5.5 555.0
2 hfeisk_3 666 6.66 6.0 6.6 666.0

csv_df.to_csv('temp.csv', index=False)
csv_df1.to_csv('temp1.csv', index=False)





share|improve this answer


























  • Giving a couple of exceptions!

    – RandomCoder
    Nov 13 '18 at 16:04











  • Traceback (most recent call last): File "/python3.6/site-packages/pandas/core/indexes/base.py", line 2525, in get_loc return self._engine.get_loc(key) File "pandas/_libs/index.pyx", line 117, in pandas._libs.index.IndexEngine.get_loc File "pandas/_libs/index.pyx", line 139, in pandas._libs.index.IndexEngine.get_loc File "pandas/_libs/hashtable_class_helper.pxi", line 1265, in pandas._libs.hashtable.PyObjectHashTable.get_item File "pandas/_libs/hashtable_class_helper.pxi", line 1273, in pandas._libs.hashtable.PyObjectHashTable.get_item KeyError: 0 and another one

    – RandomCoder
    Nov 13 '18 at 16:16











  • @RandomCoder You have to use your first column name which you want to check in place of 0 something like df[df[your col name].isin(df1[your col name])]

    – Abhi
    Nov 13 '18 at 16:27








  • 1





    It worked! Thanks!

    – RandomCoder
    Nov 13 '18 at 16:32











  • @RandomCoder Your're welcome. :)

    – Abhi
    Nov 13 '18 at 16:33














1












1








1







You can use isin().



print (df)

0 1 2 3 4 5
0 yrdi_391 111 1.11 1.0 1.1 111.0
1 yfyrn_9132 222 2.22 2.0 2.2 222.0
2 kdkfke_392 999 9.99 9.0 9.9 999.0
3 hfeisk_3 333 3.33 3.0 3.3 333.0

print (df1)

0 1 2 3 4 5
0 yrdi_391 444 4.44 4.0 4.4 444.0
1 yfyrn_9132 555 5.55 5.0 5.5 555.0
2 hfeisk_3 666 6.66 6.0 6.6 666.0
3 fhedn_271 888 8.88 8.0 8.8 888.0




csv_df = df[df[0].isin(df1[0])]

print (csv_df)
0 1 2 3 4 5
0 yrdi_391 111 1.11 1.0 1.1 111.0
1 yfyrn_9132 222 2.22 2.0 2.2 222.0
3 hfeisk_3 333 3.33 3.0 3.3 333.0

csv_df1 = df1[df1[0].isin(df[0])]

print (csv_df1)
0 1 2 3 4 5
0 yrdi_391 444 4.44 4.0 4.4 444.0
1 yfyrn_9132 555 5.55 5.0 5.5 555.0
2 hfeisk_3 666 6.66 6.0 6.6 666.0

csv_df.to_csv('temp.csv', index=False)
csv_df1.to_csv('temp1.csv', index=False)





share|improve this answer















You can use isin().



print (df)

0 1 2 3 4 5
0 yrdi_391 111 1.11 1.0 1.1 111.0
1 yfyrn_9132 222 2.22 2.0 2.2 222.0
2 kdkfke_392 999 9.99 9.0 9.9 999.0
3 hfeisk_3 333 3.33 3.0 3.3 333.0

print (df1)

0 1 2 3 4 5
0 yrdi_391 444 4.44 4.0 4.4 444.0
1 yfyrn_9132 555 5.55 5.0 5.5 555.0
2 hfeisk_3 666 6.66 6.0 6.6 666.0
3 fhedn_271 888 8.88 8.0 8.8 888.0




csv_df = df[df[0].isin(df1[0])]

print (csv_df)
0 1 2 3 4 5
0 yrdi_391 111 1.11 1.0 1.1 111.0
1 yfyrn_9132 222 2.22 2.0 2.2 222.0
3 hfeisk_3 333 3.33 3.0 3.3 333.0

csv_df1 = df1[df1[0].isin(df[0])]

print (csv_df1)
0 1 2 3 4 5
0 yrdi_391 444 4.44 4.0 4.4 444.0
1 yfyrn_9132 555 5.55 5.0 5.5 555.0
2 hfeisk_3 666 6.66 6.0 6.6 666.0

csv_df.to_csv('temp.csv', index=False)
csv_df1.to_csv('temp1.csv', index=False)






share|improve this answer














share|improve this answer



share|improve this answer








edited Nov 13 '18 at 16:33

























answered Nov 13 '18 at 15:26









AbhiAbhi

2,480320




2,480320













  • Giving a couple of exceptions!

    – RandomCoder
    Nov 13 '18 at 16:04











  • Traceback (most recent call last): File "/python3.6/site-packages/pandas/core/indexes/base.py", line 2525, in get_loc return self._engine.get_loc(key) File "pandas/_libs/index.pyx", line 117, in pandas._libs.index.IndexEngine.get_loc File "pandas/_libs/index.pyx", line 139, in pandas._libs.index.IndexEngine.get_loc File "pandas/_libs/hashtable_class_helper.pxi", line 1265, in pandas._libs.hashtable.PyObjectHashTable.get_item File "pandas/_libs/hashtable_class_helper.pxi", line 1273, in pandas._libs.hashtable.PyObjectHashTable.get_item KeyError: 0 and another one

    – RandomCoder
    Nov 13 '18 at 16:16











  • @RandomCoder You have to use your first column name which you want to check in place of 0 something like df[df[your col name].isin(df1[your col name])]

    – Abhi
    Nov 13 '18 at 16:27








  • 1





    It worked! Thanks!

    – RandomCoder
    Nov 13 '18 at 16:32











  • @RandomCoder Your're welcome. :)

    – Abhi
    Nov 13 '18 at 16:33



















  • Giving a couple of exceptions!

    – RandomCoder
    Nov 13 '18 at 16:04











  • Traceback (most recent call last): File "/python3.6/site-packages/pandas/core/indexes/base.py", line 2525, in get_loc return self._engine.get_loc(key) File "pandas/_libs/index.pyx", line 117, in pandas._libs.index.IndexEngine.get_loc File "pandas/_libs/index.pyx", line 139, in pandas._libs.index.IndexEngine.get_loc File "pandas/_libs/hashtable_class_helper.pxi", line 1265, in pandas._libs.hashtable.PyObjectHashTable.get_item File "pandas/_libs/hashtable_class_helper.pxi", line 1273, in pandas._libs.hashtable.PyObjectHashTable.get_item KeyError: 0 and another one

    – RandomCoder
    Nov 13 '18 at 16:16











  • @RandomCoder You have to use your first column name which you want to check in place of 0 something like df[df[your col name].isin(df1[your col name])]

    – Abhi
    Nov 13 '18 at 16:27








  • 1





    It worked! Thanks!

    – RandomCoder
    Nov 13 '18 at 16:32











  • @RandomCoder Your're welcome. :)

    – Abhi
    Nov 13 '18 at 16:33

















Giving a couple of exceptions!

– RandomCoder
Nov 13 '18 at 16:04





Giving a couple of exceptions!

– RandomCoder
Nov 13 '18 at 16:04













Traceback (most recent call last): File "/python3.6/site-packages/pandas/core/indexes/base.py", line 2525, in get_loc return self._engine.get_loc(key) File "pandas/_libs/index.pyx", line 117, in pandas._libs.index.IndexEngine.get_loc File "pandas/_libs/index.pyx", line 139, in pandas._libs.index.IndexEngine.get_loc File "pandas/_libs/hashtable_class_helper.pxi", line 1265, in pandas._libs.hashtable.PyObjectHashTable.get_item File "pandas/_libs/hashtable_class_helper.pxi", line 1273, in pandas._libs.hashtable.PyObjectHashTable.get_item KeyError: 0 and another one

– RandomCoder
Nov 13 '18 at 16:16





Traceback (most recent call last): File "/python3.6/site-packages/pandas/core/indexes/base.py", line 2525, in get_loc return self._engine.get_loc(key) File "pandas/_libs/index.pyx", line 117, in pandas._libs.index.IndexEngine.get_loc File "pandas/_libs/index.pyx", line 139, in pandas._libs.index.IndexEngine.get_loc File "pandas/_libs/hashtable_class_helper.pxi", line 1265, in pandas._libs.hashtable.PyObjectHashTable.get_item File "pandas/_libs/hashtable_class_helper.pxi", line 1273, in pandas._libs.hashtable.PyObjectHashTable.get_item KeyError: 0 and another one

– RandomCoder
Nov 13 '18 at 16:16













@RandomCoder You have to use your first column name which you want to check in place of 0 something like df[df[your col name].isin(df1[your col name])]

– Abhi
Nov 13 '18 at 16:27







@RandomCoder You have to use your first column name which you want to check in place of 0 something like df[df[your col name].isin(df1[your col name])]

– Abhi
Nov 13 '18 at 16:27






1




1





It worked! Thanks!

– RandomCoder
Nov 13 '18 at 16:32





It worked! Thanks!

– RandomCoder
Nov 13 '18 at 16:32













@RandomCoder Your're welcome. :)

– Abhi
Nov 13 '18 at 16:33





@RandomCoder Your're welcome. :)

– Abhi
Nov 13 '18 at 16:33


















draft saved

draft discarded




















































Thanks for contributing an answer to Stack Overflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53283531%2fpython-pandas-compare-two-csv-files-and-delete-lines-from-both-the-file-by-matc%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







這個網誌中的熱門文章

Xamarin.form Move up view when keyboard appear

Post-Redirect-Get with Spring WebFlux and Thymeleaf

Anylogic : not able to use stopDelay()