Asymptotics for the first zero of the Bessel functions












2












$begingroup$


Let $J_nu$ be the standard Bessel function of the first kind and let $x_nu$ be its smallest zero. Is there a simple reference or result for the asymptotic expansion of $x_nu$ when $nu$ goes to $+infty$?










share|cite|improve this question









$endgroup$












  • $begingroup$
    Have you looked at DLMF 20.21(vii)?
    $endgroup$
    – Somos
    Nov 17 '18 at 20:24


















2












$begingroup$


Let $J_nu$ be the standard Bessel function of the first kind and let $x_nu$ be its smallest zero. Is there a simple reference or result for the asymptotic expansion of $x_nu$ when $nu$ goes to $+infty$?










share|cite|improve this question









$endgroup$












  • $begingroup$
    Have you looked at DLMF 20.21(vii)?
    $endgroup$
    – Somos
    Nov 17 '18 at 20:24
















2












2








2





$begingroup$


Let $J_nu$ be the standard Bessel function of the first kind and let $x_nu$ be its smallest zero. Is there a simple reference or result for the asymptotic expansion of $x_nu$ when $nu$ goes to $+infty$?










share|cite|improve this question









$endgroup$




Let $J_nu$ be the standard Bessel function of the first kind and let $x_nu$ be its smallest zero. Is there a simple reference or result for the asymptotic expansion of $x_nu$ when $nu$ goes to $+infty$?







special-functions asymptotics bessel-functions






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Nov 17 '18 at 19:43









BazinBazin

8,1671238




8,1671238












  • $begingroup$
    Have you looked at DLMF 20.21(vii)?
    $endgroup$
    – Somos
    Nov 17 '18 at 20:24




















  • $begingroup$
    Have you looked at DLMF 20.21(vii)?
    $endgroup$
    – Somos
    Nov 17 '18 at 20:24


















$begingroup$
Have you looked at DLMF 20.21(vii)?
$endgroup$
– Somos
Nov 17 '18 at 20:24






$begingroup$
Have you looked at DLMF 20.21(vii)?
$endgroup$
– Somos
Nov 17 '18 at 20:24












1 Answer
1






active

oldest

votes


















5












$begingroup$

Watson? (1922, pp. 486, 516, 521) has for the smallest positive zero:
$$
sqrt{nu(nu+2)}<x_nu<sqrt{2(nu+1)(nu+3)},
$$

$$
x_nu= nu+1.855757nu^{1/3}+O(nu^{-1/3}).
$$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "504"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f315553%2fasymptotics-for-the-first-zero-of-the-bessel-functions%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    5












    $begingroup$

    Watson? (1922, pp. 486, 516, 521) has for the smallest positive zero:
    $$
    sqrt{nu(nu+2)}<x_nu<sqrt{2(nu+1)(nu+3)},
    $$

    $$
    x_nu= nu+1.855757nu^{1/3}+O(nu^{-1/3}).
    $$






    share|cite|improve this answer









    $endgroup$


















      5












      $begingroup$

      Watson? (1922, pp. 486, 516, 521) has for the smallest positive zero:
      $$
      sqrt{nu(nu+2)}<x_nu<sqrt{2(nu+1)(nu+3)},
      $$

      $$
      x_nu= nu+1.855757nu^{1/3}+O(nu^{-1/3}).
      $$






      share|cite|improve this answer









      $endgroup$
















        5












        5








        5





        $begingroup$

        Watson? (1922, pp. 486, 516, 521) has for the smallest positive zero:
        $$
        sqrt{nu(nu+2)}<x_nu<sqrt{2(nu+1)(nu+3)},
        $$

        $$
        x_nu= nu+1.855757nu^{1/3}+O(nu^{-1/3}).
        $$






        share|cite|improve this answer









        $endgroup$



        Watson? (1922, pp. 486, 516, 521) has for the smallest positive zero:
        $$
        sqrt{nu(nu+2)}<x_nu<sqrt{2(nu+1)(nu+3)},
        $$

        $$
        x_nu= nu+1.855757nu^{1/3}+O(nu^{-1/3}).
        $$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Nov 17 '18 at 19:56









        Francois ZieglerFrancois Ziegler

        19.7k371116




        19.7k371116






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to MathOverflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f315553%2fasymptotics-for-the-first-zero-of-the-bessel-functions%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            這個網誌中的熱門文章

            Xamarin.form Move up view when keyboard appear

            Post-Redirect-Get with Spring WebFlux and Thymeleaf

            Anylogic : not able to use stopDelay()