Comparing multiple categorical variables in R
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ height:90px;width:728px;box-sizing:border-box;
}
So I would like to stack the two bars from each of these graphs into one big graph. That is, I would like Black State Claim (from plot a) to be right next to Black Civil Rights Claim (from plot b) and consequently for all races into one graph.
Since some of the data, like asian, is so low, is there a more ideal way to compare State Claim/Civil Rights Claim Status with Race???
#a) State Claim?
race_claim <- data.frame(table(jail$Race,jail$State_Claim_Made))
names(race_claim) <- c("Race","Claim","Count")
ggplot(data=race_claim, aes(x=Race, y=Count, fill=Claim)) + geom_bar(stat = "identity")
#b) civil rights claim?
race_claim_civ <- data.frame(table(jail$Race,jail$Non_Statutory))
names(race_claim_civ) <- c("Race","Claim","Count")
ggplot(data=race_claim_civ, aes(x=Race, y=Count, fill=Claim)) + geom_bar(stat = "identity")
DATA SAMPLE:
structure(list(Last_Name = c("Banks", "Beamon", "Dandridge",
"Deakle, Jr.", "Doyle", "Drinkard", "Ellis", "Embry", "Gaines",
"Gurley", "Hinton", "Holemon", "Holsomback", "Hunt", "Jones",
"Mahan", "Mahan", "McMillian", "Moore", "Padgett"), First_Name = c("Medell",
"Melvin Todd", "Beniah Alton", "Evan Lee", "Robert E.", "Gary",
"Andre", "Anthony", "Freddie Lee", "Timothy", "Anthony", "Jeffrey",
"John", "H. Guy", "Lydia Diane", "Dale", "Ronnie", "Walter",
"Daniel Wade", "Larry Randal"), Age = c("27", "24", "29", "59",
"44", "37", "35", "23", "22", "22", "29", "23", "33", "54", "40",
"22", "26", "45", "24", "40"), Race = c("Black", "Asian", "Caucasian",
"Caucasian", "Other", "Asian", "Black", "Black", "Black",
"Caucasian", "Black", "Caucasian", "Caucasian", "Other",
"Black", "Caucasian", "Asian", "Black", "Native American", "Caucasian"
), Sex = c("Male", "Male", "Male", "Male", "Male", "Male", "Male",
"Male", "Male", "Male", "Male", "Male", "Male", "Male", "Female",
"Male", "Male", "Male", "Male", "Male"), State = c("Alabama",
"Alabama", "Alabama", "Alabama", "Alabama", "Alabama", "Alabama",
"Alabama", "Alabama", "Alabama", "Alabama", "Alabama", "Alabama",
"Alabama", "Alabama", "Alabama", "Alabama", "Alabama", "Alabama",
"Alabama"), CIU = c(0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0,
0, 0, 0, 0, 1, 0), Guilty_Plea = c(1, 0, 0, 0, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), IO = c(0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Worst_Crime = c(6, 1,
1, 4, 4, 1, 2, 1, 1, 6, 1, 2, 4, 6, 3, 2, 2, 1, 1, 1), Occurred = c(1999,
1988, 1994, 2014, 1991, 1993, 2012, 1992, 1972, 1999, 1985, 1987,
1987, 1987, 1997, 1983, 1983, 1986, 1999, 1990), Convicted = c(2001,
1989, 1996, 2015, 1992, 1995, 2013, 1993, 1974, 2000, 1986, 1988,
1988, 1993, 2000, 1986, 1986, 1988, 2002, 1992), Exonerated = c(2003,
1990, 2015, 2015, 2001, 2001, 2014, 1997, 1991, 2002, 2015, 1999,
2000, 1998, 2006, 1998, 1998, 1993, 2009, 1997), Sentence = c("15",
"25", "Life", "Not sentenced", "20", "Death", "85", "20", "30",
"35", "Death", "Life", "25", "Probation", "Life without parole",
"35", "Life without parole", "Death", "Death", "Death"), Death_Penalty = c(0,
0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1), DNA_Only = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0), FC = c(1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), MWID = c(0,
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0), F_MFE = c(0,
0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1), P_FA = c(1,
1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0), OM = c(1,
1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1), ILD = c(0,
0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0), State_Statute = c("Y",
"Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y",
"Y", "Y", "Y", "Y", "Y", "Y"), State_Claim_Made = c(0, 0, 1,
0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1 0), Zero_time = c(0,
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0), Prem = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Pending = c(0,
0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0), Denied = c(0,
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), State_Award = c("0",
"0", "2", "0", "1", "0", "0", "0", "1", "0", "2", "0", "0", "0",
"0", "0", "0", "0", "0", "0"), Amount = c("0", "0", NA, "0",
"129041.88", "0", "0", "0", "1000000", "0", NA, "0", "0", "0",
"0", "0", "0", "0", "0", "0"), `Non-Statutory_Case_Filed` = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0), No_Time = c(0,
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0), Unfiled = c(1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1), Dismissed = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0), Pending__1 = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Award = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0), Premature = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Amount__1 = c("0",
"0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
"0", "0", "0", "$ undisclosed", "0", "0"), Years_Lost = c(1.7,
0.1, 19.5, 0, 2.6, 5.7, 1.8, 4, 10.7, 1.5, 28.5, 10.6, 10.1,
0, 5.8, 11.4, 11.4, 4.5, 5.4, 5.5), State_Award2 = c("0", "0",
"0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0",
"0", "0", "0", "0", "0")), row.names = c(NA, -20L), class = c("tbl_df",
"tbl", "data.frame"))
r ggplot2 categorical-data
add a comment |
So I would like to stack the two bars from each of these graphs into one big graph. That is, I would like Black State Claim (from plot a) to be right next to Black Civil Rights Claim (from plot b) and consequently for all races into one graph.
Since some of the data, like asian, is so low, is there a more ideal way to compare State Claim/Civil Rights Claim Status with Race???
#a) State Claim?
race_claim <- data.frame(table(jail$Race,jail$State_Claim_Made))
names(race_claim) <- c("Race","Claim","Count")
ggplot(data=race_claim, aes(x=Race, y=Count, fill=Claim)) + geom_bar(stat = "identity")
#b) civil rights claim?
race_claim_civ <- data.frame(table(jail$Race,jail$Non_Statutory))
names(race_claim_civ) <- c("Race","Claim","Count")
ggplot(data=race_claim_civ, aes(x=Race, y=Count, fill=Claim)) + geom_bar(stat = "identity")
DATA SAMPLE:
structure(list(Last_Name = c("Banks", "Beamon", "Dandridge",
"Deakle, Jr.", "Doyle", "Drinkard", "Ellis", "Embry", "Gaines",
"Gurley", "Hinton", "Holemon", "Holsomback", "Hunt", "Jones",
"Mahan", "Mahan", "McMillian", "Moore", "Padgett"), First_Name = c("Medell",
"Melvin Todd", "Beniah Alton", "Evan Lee", "Robert E.", "Gary",
"Andre", "Anthony", "Freddie Lee", "Timothy", "Anthony", "Jeffrey",
"John", "H. Guy", "Lydia Diane", "Dale", "Ronnie", "Walter",
"Daniel Wade", "Larry Randal"), Age = c("27", "24", "29", "59",
"44", "37", "35", "23", "22", "22", "29", "23", "33", "54", "40",
"22", "26", "45", "24", "40"), Race = c("Black", "Asian", "Caucasian",
"Caucasian", "Other", "Asian", "Black", "Black", "Black",
"Caucasian", "Black", "Caucasian", "Caucasian", "Other",
"Black", "Caucasian", "Asian", "Black", "Native American", "Caucasian"
), Sex = c("Male", "Male", "Male", "Male", "Male", "Male", "Male",
"Male", "Male", "Male", "Male", "Male", "Male", "Male", "Female",
"Male", "Male", "Male", "Male", "Male"), State = c("Alabama",
"Alabama", "Alabama", "Alabama", "Alabama", "Alabama", "Alabama",
"Alabama", "Alabama", "Alabama", "Alabama", "Alabama", "Alabama",
"Alabama", "Alabama", "Alabama", "Alabama", "Alabama", "Alabama",
"Alabama"), CIU = c(0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0,
0, 0, 0, 0, 1, 0), Guilty_Plea = c(1, 0, 0, 0, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), IO = c(0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Worst_Crime = c(6, 1,
1, 4, 4, 1, 2, 1, 1, 6, 1, 2, 4, 6, 3, 2, 2, 1, 1, 1), Occurred = c(1999,
1988, 1994, 2014, 1991, 1993, 2012, 1992, 1972, 1999, 1985, 1987,
1987, 1987, 1997, 1983, 1983, 1986, 1999, 1990), Convicted = c(2001,
1989, 1996, 2015, 1992, 1995, 2013, 1993, 1974, 2000, 1986, 1988,
1988, 1993, 2000, 1986, 1986, 1988, 2002, 1992), Exonerated = c(2003,
1990, 2015, 2015, 2001, 2001, 2014, 1997, 1991, 2002, 2015, 1999,
2000, 1998, 2006, 1998, 1998, 1993, 2009, 1997), Sentence = c("15",
"25", "Life", "Not sentenced", "20", "Death", "85", "20", "30",
"35", "Death", "Life", "25", "Probation", "Life without parole",
"35", "Life without parole", "Death", "Death", "Death"), Death_Penalty = c(0,
0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1), DNA_Only = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0), FC = c(1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), MWID = c(0,
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0), F_MFE = c(0,
0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1), P_FA = c(1,
1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0), OM = c(1,
1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1), ILD = c(0,
0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0), State_Statute = c("Y",
"Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y",
"Y", "Y", "Y", "Y", "Y", "Y"), State_Claim_Made = c(0, 0, 1,
0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1 0), Zero_time = c(0,
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0), Prem = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Pending = c(0,
0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0), Denied = c(0,
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), State_Award = c("0",
"0", "2", "0", "1", "0", "0", "0", "1", "0", "2", "0", "0", "0",
"0", "0", "0", "0", "0", "0"), Amount = c("0", "0", NA, "0",
"129041.88", "0", "0", "0", "1000000", "0", NA, "0", "0", "0",
"0", "0", "0", "0", "0", "0"), `Non-Statutory_Case_Filed` = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0), No_Time = c(0,
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0), Unfiled = c(1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1), Dismissed = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0), Pending__1 = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Award = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0), Premature = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Amount__1 = c("0",
"0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
"0", "0", "0", "$ undisclosed", "0", "0"), Years_Lost = c(1.7,
0.1, 19.5, 0, 2.6, 5.7, 1.8, 4, 10.7, 1.5, 28.5, 10.6, 10.1,
0, 5.8, 11.4, 11.4, 4.5, 5.4, 5.5), State_Award2 = c("0", "0",
"0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0",
"0", "0", "0", "0", "0")), row.names = c(NA, -20L), class = c("tbl_df",
"tbl", "data.frame"))
r ggplot2 categorical-data
Something seems to be off with thestructure
you posted. Could you check again? Also it would be helpful if you could provide copy your output plot into the question.
– Roman
Nov 24 '18 at 10:58
add a comment |
So I would like to stack the two bars from each of these graphs into one big graph. That is, I would like Black State Claim (from plot a) to be right next to Black Civil Rights Claim (from plot b) and consequently for all races into one graph.
Since some of the data, like asian, is so low, is there a more ideal way to compare State Claim/Civil Rights Claim Status with Race???
#a) State Claim?
race_claim <- data.frame(table(jail$Race,jail$State_Claim_Made))
names(race_claim) <- c("Race","Claim","Count")
ggplot(data=race_claim, aes(x=Race, y=Count, fill=Claim)) + geom_bar(stat = "identity")
#b) civil rights claim?
race_claim_civ <- data.frame(table(jail$Race,jail$Non_Statutory))
names(race_claim_civ) <- c("Race","Claim","Count")
ggplot(data=race_claim_civ, aes(x=Race, y=Count, fill=Claim)) + geom_bar(stat = "identity")
DATA SAMPLE:
structure(list(Last_Name = c("Banks", "Beamon", "Dandridge",
"Deakle, Jr.", "Doyle", "Drinkard", "Ellis", "Embry", "Gaines",
"Gurley", "Hinton", "Holemon", "Holsomback", "Hunt", "Jones",
"Mahan", "Mahan", "McMillian", "Moore", "Padgett"), First_Name = c("Medell",
"Melvin Todd", "Beniah Alton", "Evan Lee", "Robert E.", "Gary",
"Andre", "Anthony", "Freddie Lee", "Timothy", "Anthony", "Jeffrey",
"John", "H. Guy", "Lydia Diane", "Dale", "Ronnie", "Walter",
"Daniel Wade", "Larry Randal"), Age = c("27", "24", "29", "59",
"44", "37", "35", "23", "22", "22", "29", "23", "33", "54", "40",
"22", "26", "45", "24", "40"), Race = c("Black", "Asian", "Caucasian",
"Caucasian", "Other", "Asian", "Black", "Black", "Black",
"Caucasian", "Black", "Caucasian", "Caucasian", "Other",
"Black", "Caucasian", "Asian", "Black", "Native American", "Caucasian"
), Sex = c("Male", "Male", "Male", "Male", "Male", "Male", "Male",
"Male", "Male", "Male", "Male", "Male", "Male", "Male", "Female",
"Male", "Male", "Male", "Male", "Male"), State = c("Alabama",
"Alabama", "Alabama", "Alabama", "Alabama", "Alabama", "Alabama",
"Alabama", "Alabama", "Alabama", "Alabama", "Alabama", "Alabama",
"Alabama", "Alabama", "Alabama", "Alabama", "Alabama", "Alabama",
"Alabama"), CIU = c(0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0,
0, 0, 0, 0, 1, 0), Guilty_Plea = c(1, 0, 0, 0, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), IO = c(0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Worst_Crime = c(6, 1,
1, 4, 4, 1, 2, 1, 1, 6, 1, 2, 4, 6, 3, 2, 2, 1, 1, 1), Occurred = c(1999,
1988, 1994, 2014, 1991, 1993, 2012, 1992, 1972, 1999, 1985, 1987,
1987, 1987, 1997, 1983, 1983, 1986, 1999, 1990), Convicted = c(2001,
1989, 1996, 2015, 1992, 1995, 2013, 1993, 1974, 2000, 1986, 1988,
1988, 1993, 2000, 1986, 1986, 1988, 2002, 1992), Exonerated = c(2003,
1990, 2015, 2015, 2001, 2001, 2014, 1997, 1991, 2002, 2015, 1999,
2000, 1998, 2006, 1998, 1998, 1993, 2009, 1997), Sentence = c("15",
"25", "Life", "Not sentenced", "20", "Death", "85", "20", "30",
"35", "Death", "Life", "25", "Probation", "Life without parole",
"35", "Life without parole", "Death", "Death", "Death"), Death_Penalty = c(0,
0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1), DNA_Only = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0), FC = c(1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), MWID = c(0,
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0), F_MFE = c(0,
0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1), P_FA = c(1,
1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0), OM = c(1,
1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1), ILD = c(0,
0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0), State_Statute = c("Y",
"Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y",
"Y", "Y", "Y", "Y", "Y", "Y"), State_Claim_Made = c(0, 0, 1,
0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1 0), Zero_time = c(0,
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0), Prem = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Pending = c(0,
0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0), Denied = c(0,
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), State_Award = c("0",
"0", "2", "0", "1", "0", "0", "0", "1", "0", "2", "0", "0", "0",
"0", "0", "0", "0", "0", "0"), Amount = c("0", "0", NA, "0",
"129041.88", "0", "0", "0", "1000000", "0", NA, "0", "0", "0",
"0", "0", "0", "0", "0", "0"), `Non-Statutory_Case_Filed` = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0), No_Time = c(0,
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0), Unfiled = c(1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1), Dismissed = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0), Pending__1 = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Award = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0), Premature = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Amount__1 = c("0",
"0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
"0", "0", "0", "$ undisclosed", "0", "0"), Years_Lost = c(1.7,
0.1, 19.5, 0, 2.6, 5.7, 1.8, 4, 10.7, 1.5, 28.5, 10.6, 10.1,
0, 5.8, 11.4, 11.4, 4.5, 5.4, 5.5), State_Award2 = c("0", "0",
"0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0",
"0", "0", "0", "0", "0")), row.names = c(NA, -20L), class = c("tbl_df",
"tbl", "data.frame"))
r ggplot2 categorical-data
So I would like to stack the two bars from each of these graphs into one big graph. That is, I would like Black State Claim (from plot a) to be right next to Black Civil Rights Claim (from plot b) and consequently for all races into one graph.
Since some of the data, like asian, is so low, is there a more ideal way to compare State Claim/Civil Rights Claim Status with Race???
#a) State Claim?
race_claim <- data.frame(table(jail$Race,jail$State_Claim_Made))
names(race_claim) <- c("Race","Claim","Count")
ggplot(data=race_claim, aes(x=Race, y=Count, fill=Claim)) + geom_bar(stat = "identity")
#b) civil rights claim?
race_claim_civ <- data.frame(table(jail$Race,jail$Non_Statutory))
names(race_claim_civ) <- c("Race","Claim","Count")
ggplot(data=race_claim_civ, aes(x=Race, y=Count, fill=Claim)) + geom_bar(stat = "identity")
DATA SAMPLE:
structure(list(Last_Name = c("Banks", "Beamon", "Dandridge",
"Deakle, Jr.", "Doyle", "Drinkard", "Ellis", "Embry", "Gaines",
"Gurley", "Hinton", "Holemon", "Holsomback", "Hunt", "Jones",
"Mahan", "Mahan", "McMillian", "Moore", "Padgett"), First_Name = c("Medell",
"Melvin Todd", "Beniah Alton", "Evan Lee", "Robert E.", "Gary",
"Andre", "Anthony", "Freddie Lee", "Timothy", "Anthony", "Jeffrey",
"John", "H. Guy", "Lydia Diane", "Dale", "Ronnie", "Walter",
"Daniel Wade", "Larry Randal"), Age = c("27", "24", "29", "59",
"44", "37", "35", "23", "22", "22", "29", "23", "33", "54", "40",
"22", "26", "45", "24", "40"), Race = c("Black", "Asian", "Caucasian",
"Caucasian", "Other", "Asian", "Black", "Black", "Black",
"Caucasian", "Black", "Caucasian", "Caucasian", "Other",
"Black", "Caucasian", "Asian", "Black", "Native American", "Caucasian"
), Sex = c("Male", "Male", "Male", "Male", "Male", "Male", "Male",
"Male", "Male", "Male", "Male", "Male", "Male", "Male", "Female",
"Male", "Male", "Male", "Male", "Male"), State = c("Alabama",
"Alabama", "Alabama", "Alabama", "Alabama", "Alabama", "Alabama",
"Alabama", "Alabama", "Alabama", "Alabama", "Alabama", "Alabama",
"Alabama", "Alabama", "Alabama", "Alabama", "Alabama", "Alabama",
"Alabama"), CIU = c(0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0,
0, 0, 0, 0, 1, 0), Guilty_Plea = c(1, 0, 0, 0, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), IO = c(0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Worst_Crime = c(6, 1,
1, 4, 4, 1, 2, 1, 1, 6, 1, 2, 4, 6, 3, 2, 2, 1, 1, 1), Occurred = c(1999,
1988, 1994, 2014, 1991, 1993, 2012, 1992, 1972, 1999, 1985, 1987,
1987, 1987, 1997, 1983, 1983, 1986, 1999, 1990), Convicted = c(2001,
1989, 1996, 2015, 1992, 1995, 2013, 1993, 1974, 2000, 1986, 1988,
1988, 1993, 2000, 1986, 1986, 1988, 2002, 1992), Exonerated = c(2003,
1990, 2015, 2015, 2001, 2001, 2014, 1997, 1991, 2002, 2015, 1999,
2000, 1998, 2006, 1998, 1998, 1993, 2009, 1997), Sentence = c("15",
"25", "Life", "Not sentenced", "20", "Death", "85", "20", "30",
"35", "Death", "Life", "25", "Probation", "Life without parole",
"35", "Life without parole", "Death", "Death", "Death"), Death_Penalty = c(0,
0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1), DNA_Only = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0), FC = c(1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), MWID = c(0,
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0), F_MFE = c(0,
0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1), P_FA = c(1,
1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0), OM = c(1,
1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1), ILD = c(0,
0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0), State_Statute = c("Y",
"Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y",
"Y", "Y", "Y", "Y", "Y", "Y"), State_Claim_Made = c(0, 0, 1,
0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1 0), Zero_time = c(0,
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0), Prem = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Pending = c(0,
0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0), Denied = c(0,
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), State_Award = c("0",
"0", "2", "0", "1", "0", "0", "0", "1", "0", "2", "0", "0", "0",
"0", "0", "0", "0", "0", "0"), Amount = c("0", "0", NA, "0",
"129041.88", "0", "0", "0", "1000000", "0", NA, "0", "0", "0",
"0", "0", "0", "0", "0", "0"), `Non-Statutory_Case_Filed` = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0), No_Time = c(0,
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0), Unfiled = c(1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1), Dismissed = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0), Pending__1 = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Award = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0), Premature = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Amount__1 = c("0",
"0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
"0", "0", "0", "$ undisclosed", "0", "0"), Years_Lost = c(1.7,
0.1, 19.5, 0, 2.6, 5.7, 1.8, 4, 10.7, 1.5, 28.5, 10.6, 10.1,
0, 5.8, 11.4, 11.4, 4.5, 5.4, 5.5), State_Award2 = c("0", "0",
"0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0",
"0", "0", "0", "0", "0")), row.names = c(NA, -20L), class = c("tbl_df",
"tbl", "data.frame"))
r ggplot2 categorical-data
r ggplot2 categorical-data
asked Nov 24 '18 at 2:56
Juanito TomasJuanito Tomas
669
669
Something seems to be off with thestructure
you posted. Could you check again? Also it would be helpful if you could provide copy your output plot into the question.
– Roman
Nov 24 '18 at 10:58
add a comment |
Something seems to be off with thestructure
you posted. Could you check again? Also it would be helpful if you could provide copy your output plot into the question.
– Roman
Nov 24 '18 at 10:58
Something seems to be off with the
structure
you posted. Could you check again? Also it would be helpful if you could provide copy your output plot into the question.– Roman
Nov 24 '18 at 10:58
Something seems to be off with the
structure
you posted. Could you check again? Also it would be helpful if you could provide copy your output plot into the question.– Roman
Nov 24 '18 at 10:58
add a comment |
1 Answer
1
active
oldest
votes
I think there is a clash between two requirements: to make the barplot stack
-ed and at the same time - dodge
-d. Probably my solution isn't the best, and someone would do better. But that's what I've got right now:
Preprocessing
library(tidyverse)
dat <- jail %>%
rename_all(tolower) %>%
select(race, state_claim_made, non_statutory_case_filed) %>%
gather(key = action, value = claim, 2, 3) %>%
count(race, action, claim) %>%
mutate(action = ifelse(action == "state_claim_made", "state", "civil")) %>%
mutate(x = as.numeric(reorder(interaction(race, action), 1:n())))
Output:
# # A tibble: 15 x 5
# race action claim n x
# <chr> <chr> <dbl> <int> <dbl>
# 1 Asian civil 0 3 1
# 2 Asian state 0 2 2
# 3 Asian state 1 1 2
# 4 Black civil 0 6 3
# 5 Black civil 1 1 3
# 6 Black state 0 3 4
# 7 Black state 1 4 4
# 8 Caucasian civil 0 7 5
# 9 Caucasian state 0 6 6
# 10 Caucasian state 1 1 6
# 11 Native American civil 1 1 7
# 12 Native American state 1 1 8
# 13 Other civil 0 2 9
# 14 Other state 0 1 10
# 15 Other state 1 1 10
Some necessary tweaks for x-axis labels:
Adapted from this answer:
breaks = sort(c(unique(dat$x), seq(min(dat$x) + .5,
max(dat$x) + .5,
length(unique(dat$action))
)
)
)
labels = unlist(
lapply(unique(dat$race), function(i) c("civil", paste0("n", i), "state"))
)
Plot data
ggplot(dat, aes(x = x, y = n, fill = factor(claim))) +
geom_col(show.legend = T) +
ggthemes::theme_few() +
scale_fill_manual(name = NULL,
values = c("gray75", "gray25"),
breaks= c("0", "1"),
labels = c("false", "true")
) +
scale_x_continuous(breaks = breaks, labels = labels) +
theme(axis.title.x = element_blank(), axis.ticks.x = element_blank()) +
labs(title = "Jail Plot", y = "Count")
Data
The data you attached are corrupted - missing comma or $
somewhere in the table (I don't remember what that was). There are the same data, but without variables we don't to solve the problem.
structure(
list(Race = c("Black", "Asian", "Caucasian", "Caucasian", "Other", "Asian",
"Black", "Black", "Black", "Caucasian", "Black", "Caucasian",
"Caucasian", "Other", "Black", "Caucasian", "Asian", "Black",
"Native American", "Caucasian"),
State_Claim_Made = c(0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1,
0, 1, 0),
Non_Statutory_Case_Filed = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 1, 0)
),
row.names = c(NA, -20L),
class = c("tbl_df", "tbl", "data.frame")
)
Wow good stuff, wish I could code like this haha. Now I would like to further compare these groups. To see if the proportion of True/False (Filed a claim vs. Not filed a claim) is the same for each race, how would I do an ANOVA test with this setup?
– Juanito Tomas
Nov 26 '18 at 23:14
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53454787%2fcomparing-multiple-categorical-variables-in-r%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
I think there is a clash between two requirements: to make the barplot stack
-ed and at the same time - dodge
-d. Probably my solution isn't the best, and someone would do better. But that's what I've got right now:
Preprocessing
library(tidyverse)
dat <- jail %>%
rename_all(tolower) %>%
select(race, state_claim_made, non_statutory_case_filed) %>%
gather(key = action, value = claim, 2, 3) %>%
count(race, action, claim) %>%
mutate(action = ifelse(action == "state_claim_made", "state", "civil")) %>%
mutate(x = as.numeric(reorder(interaction(race, action), 1:n())))
Output:
# # A tibble: 15 x 5
# race action claim n x
# <chr> <chr> <dbl> <int> <dbl>
# 1 Asian civil 0 3 1
# 2 Asian state 0 2 2
# 3 Asian state 1 1 2
# 4 Black civil 0 6 3
# 5 Black civil 1 1 3
# 6 Black state 0 3 4
# 7 Black state 1 4 4
# 8 Caucasian civil 0 7 5
# 9 Caucasian state 0 6 6
# 10 Caucasian state 1 1 6
# 11 Native American civil 1 1 7
# 12 Native American state 1 1 8
# 13 Other civil 0 2 9
# 14 Other state 0 1 10
# 15 Other state 1 1 10
Some necessary tweaks for x-axis labels:
Adapted from this answer:
breaks = sort(c(unique(dat$x), seq(min(dat$x) + .5,
max(dat$x) + .5,
length(unique(dat$action))
)
)
)
labels = unlist(
lapply(unique(dat$race), function(i) c("civil", paste0("n", i), "state"))
)
Plot data
ggplot(dat, aes(x = x, y = n, fill = factor(claim))) +
geom_col(show.legend = T) +
ggthemes::theme_few() +
scale_fill_manual(name = NULL,
values = c("gray75", "gray25"),
breaks= c("0", "1"),
labels = c("false", "true")
) +
scale_x_continuous(breaks = breaks, labels = labels) +
theme(axis.title.x = element_blank(), axis.ticks.x = element_blank()) +
labs(title = "Jail Plot", y = "Count")
Data
The data you attached are corrupted - missing comma or $
somewhere in the table (I don't remember what that was). There are the same data, but without variables we don't to solve the problem.
structure(
list(Race = c("Black", "Asian", "Caucasian", "Caucasian", "Other", "Asian",
"Black", "Black", "Black", "Caucasian", "Black", "Caucasian",
"Caucasian", "Other", "Black", "Caucasian", "Asian", "Black",
"Native American", "Caucasian"),
State_Claim_Made = c(0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1,
0, 1, 0),
Non_Statutory_Case_Filed = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 1, 0)
),
row.names = c(NA, -20L),
class = c("tbl_df", "tbl", "data.frame")
)
Wow good stuff, wish I could code like this haha. Now I would like to further compare these groups. To see if the proportion of True/False (Filed a claim vs. Not filed a claim) is the same for each race, how would I do an ANOVA test with this setup?
– Juanito Tomas
Nov 26 '18 at 23:14
add a comment |
I think there is a clash between two requirements: to make the barplot stack
-ed and at the same time - dodge
-d. Probably my solution isn't the best, and someone would do better. But that's what I've got right now:
Preprocessing
library(tidyverse)
dat <- jail %>%
rename_all(tolower) %>%
select(race, state_claim_made, non_statutory_case_filed) %>%
gather(key = action, value = claim, 2, 3) %>%
count(race, action, claim) %>%
mutate(action = ifelse(action == "state_claim_made", "state", "civil")) %>%
mutate(x = as.numeric(reorder(interaction(race, action), 1:n())))
Output:
# # A tibble: 15 x 5
# race action claim n x
# <chr> <chr> <dbl> <int> <dbl>
# 1 Asian civil 0 3 1
# 2 Asian state 0 2 2
# 3 Asian state 1 1 2
# 4 Black civil 0 6 3
# 5 Black civil 1 1 3
# 6 Black state 0 3 4
# 7 Black state 1 4 4
# 8 Caucasian civil 0 7 5
# 9 Caucasian state 0 6 6
# 10 Caucasian state 1 1 6
# 11 Native American civil 1 1 7
# 12 Native American state 1 1 8
# 13 Other civil 0 2 9
# 14 Other state 0 1 10
# 15 Other state 1 1 10
Some necessary tweaks for x-axis labels:
Adapted from this answer:
breaks = sort(c(unique(dat$x), seq(min(dat$x) + .5,
max(dat$x) + .5,
length(unique(dat$action))
)
)
)
labels = unlist(
lapply(unique(dat$race), function(i) c("civil", paste0("n", i), "state"))
)
Plot data
ggplot(dat, aes(x = x, y = n, fill = factor(claim))) +
geom_col(show.legend = T) +
ggthemes::theme_few() +
scale_fill_manual(name = NULL,
values = c("gray75", "gray25"),
breaks= c("0", "1"),
labels = c("false", "true")
) +
scale_x_continuous(breaks = breaks, labels = labels) +
theme(axis.title.x = element_blank(), axis.ticks.x = element_blank()) +
labs(title = "Jail Plot", y = "Count")
Data
The data you attached are corrupted - missing comma or $
somewhere in the table (I don't remember what that was). There are the same data, but without variables we don't to solve the problem.
structure(
list(Race = c("Black", "Asian", "Caucasian", "Caucasian", "Other", "Asian",
"Black", "Black", "Black", "Caucasian", "Black", "Caucasian",
"Caucasian", "Other", "Black", "Caucasian", "Asian", "Black",
"Native American", "Caucasian"),
State_Claim_Made = c(0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1,
0, 1, 0),
Non_Statutory_Case_Filed = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 1, 0)
),
row.names = c(NA, -20L),
class = c("tbl_df", "tbl", "data.frame")
)
Wow good stuff, wish I could code like this haha. Now I would like to further compare these groups. To see if the proportion of True/False (Filed a claim vs. Not filed a claim) is the same for each race, how would I do an ANOVA test with this setup?
– Juanito Tomas
Nov 26 '18 at 23:14
add a comment |
I think there is a clash between two requirements: to make the barplot stack
-ed and at the same time - dodge
-d. Probably my solution isn't the best, and someone would do better. But that's what I've got right now:
Preprocessing
library(tidyverse)
dat <- jail %>%
rename_all(tolower) %>%
select(race, state_claim_made, non_statutory_case_filed) %>%
gather(key = action, value = claim, 2, 3) %>%
count(race, action, claim) %>%
mutate(action = ifelse(action == "state_claim_made", "state", "civil")) %>%
mutate(x = as.numeric(reorder(interaction(race, action), 1:n())))
Output:
# # A tibble: 15 x 5
# race action claim n x
# <chr> <chr> <dbl> <int> <dbl>
# 1 Asian civil 0 3 1
# 2 Asian state 0 2 2
# 3 Asian state 1 1 2
# 4 Black civil 0 6 3
# 5 Black civil 1 1 3
# 6 Black state 0 3 4
# 7 Black state 1 4 4
# 8 Caucasian civil 0 7 5
# 9 Caucasian state 0 6 6
# 10 Caucasian state 1 1 6
# 11 Native American civil 1 1 7
# 12 Native American state 1 1 8
# 13 Other civil 0 2 9
# 14 Other state 0 1 10
# 15 Other state 1 1 10
Some necessary tweaks for x-axis labels:
Adapted from this answer:
breaks = sort(c(unique(dat$x), seq(min(dat$x) + .5,
max(dat$x) + .5,
length(unique(dat$action))
)
)
)
labels = unlist(
lapply(unique(dat$race), function(i) c("civil", paste0("n", i), "state"))
)
Plot data
ggplot(dat, aes(x = x, y = n, fill = factor(claim))) +
geom_col(show.legend = T) +
ggthemes::theme_few() +
scale_fill_manual(name = NULL,
values = c("gray75", "gray25"),
breaks= c("0", "1"),
labels = c("false", "true")
) +
scale_x_continuous(breaks = breaks, labels = labels) +
theme(axis.title.x = element_blank(), axis.ticks.x = element_blank()) +
labs(title = "Jail Plot", y = "Count")
Data
The data you attached are corrupted - missing comma or $
somewhere in the table (I don't remember what that was). There are the same data, but without variables we don't to solve the problem.
structure(
list(Race = c("Black", "Asian", "Caucasian", "Caucasian", "Other", "Asian",
"Black", "Black", "Black", "Caucasian", "Black", "Caucasian",
"Caucasian", "Other", "Black", "Caucasian", "Asian", "Black",
"Native American", "Caucasian"),
State_Claim_Made = c(0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1,
0, 1, 0),
Non_Statutory_Case_Filed = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 1, 0)
),
row.names = c(NA, -20L),
class = c("tbl_df", "tbl", "data.frame")
)
I think there is a clash between two requirements: to make the barplot stack
-ed and at the same time - dodge
-d. Probably my solution isn't the best, and someone would do better. But that's what I've got right now:
Preprocessing
library(tidyverse)
dat <- jail %>%
rename_all(tolower) %>%
select(race, state_claim_made, non_statutory_case_filed) %>%
gather(key = action, value = claim, 2, 3) %>%
count(race, action, claim) %>%
mutate(action = ifelse(action == "state_claim_made", "state", "civil")) %>%
mutate(x = as.numeric(reorder(interaction(race, action), 1:n())))
Output:
# # A tibble: 15 x 5
# race action claim n x
# <chr> <chr> <dbl> <int> <dbl>
# 1 Asian civil 0 3 1
# 2 Asian state 0 2 2
# 3 Asian state 1 1 2
# 4 Black civil 0 6 3
# 5 Black civil 1 1 3
# 6 Black state 0 3 4
# 7 Black state 1 4 4
# 8 Caucasian civil 0 7 5
# 9 Caucasian state 0 6 6
# 10 Caucasian state 1 1 6
# 11 Native American civil 1 1 7
# 12 Native American state 1 1 8
# 13 Other civil 0 2 9
# 14 Other state 0 1 10
# 15 Other state 1 1 10
Some necessary tweaks for x-axis labels:
Adapted from this answer:
breaks = sort(c(unique(dat$x), seq(min(dat$x) + .5,
max(dat$x) + .5,
length(unique(dat$action))
)
)
)
labels = unlist(
lapply(unique(dat$race), function(i) c("civil", paste0("n", i), "state"))
)
Plot data
ggplot(dat, aes(x = x, y = n, fill = factor(claim))) +
geom_col(show.legend = T) +
ggthemes::theme_few() +
scale_fill_manual(name = NULL,
values = c("gray75", "gray25"),
breaks= c("0", "1"),
labels = c("false", "true")
) +
scale_x_continuous(breaks = breaks, labels = labels) +
theme(axis.title.x = element_blank(), axis.ticks.x = element_blank()) +
labs(title = "Jail Plot", y = "Count")
Data
The data you attached are corrupted - missing comma or $
somewhere in the table (I don't remember what that was). There are the same data, but without variables we don't to solve the problem.
structure(
list(Race = c("Black", "Asian", "Caucasian", "Caucasian", "Other", "Asian",
"Black", "Black", "Black", "Caucasian", "Black", "Caucasian",
"Caucasian", "Other", "Black", "Caucasian", "Asian", "Black",
"Native American", "Caucasian"),
State_Claim_Made = c(0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1,
0, 1, 0),
Non_Statutory_Case_Filed = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 1, 0)
),
row.names = c(NA, -20L),
class = c("tbl_df", "tbl", "data.frame")
)
edited Nov 24 '18 at 16:15
answered Nov 24 '18 at 15:58
utubunutubun
1,8501914
1,8501914
Wow good stuff, wish I could code like this haha. Now I would like to further compare these groups. To see if the proportion of True/False (Filed a claim vs. Not filed a claim) is the same for each race, how would I do an ANOVA test with this setup?
– Juanito Tomas
Nov 26 '18 at 23:14
add a comment |
Wow good stuff, wish I could code like this haha. Now I would like to further compare these groups. To see if the proportion of True/False (Filed a claim vs. Not filed a claim) is the same for each race, how would I do an ANOVA test with this setup?
– Juanito Tomas
Nov 26 '18 at 23:14
Wow good stuff, wish I could code like this haha. Now I would like to further compare these groups. To see if the proportion of True/False (Filed a claim vs. Not filed a claim) is the same for each race, how would I do an ANOVA test with this setup?
– Juanito Tomas
Nov 26 '18 at 23:14
Wow good stuff, wish I could code like this haha. Now I would like to further compare these groups. To see if the proportion of True/False (Filed a claim vs. Not filed a claim) is the same for each race, how would I do an ANOVA test with this setup?
– Juanito Tomas
Nov 26 '18 at 23:14
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53454787%2fcomparing-multiple-categorical-variables-in-r%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Something seems to be off with the
structure
you posted. Could you check again? Also it would be helpful if you could provide copy your output plot into the question.– Roman
Nov 24 '18 at 10:58