Direct limit




In mathematics, a direct limit is a way to construct a (typically large) object from many (typically smaller) objects that are put together in a specific way. These objects may be groups, rings, vector spaces or in general objects from any category. The way they are put together is specified by a system of homomorphisms (group homomorphism, ring homomorphism, or in general morphisms in the category) between those smaller objects. The direct limit of the objects Ai{displaystyle A_{i}}A_{i}, where i{displaystyle i}i ranges over some directed set I{displaystyle I}I, is denoted by lim→Ai{displaystyle varinjlim A_{i}}{displaystyle varinjlim A_{i}}. (This is a slight abuse of notation as it suppresses the system of homomorphisms that is crucial for the structure of the limit.)


Direct limits are a special case of the concept of colimit in category theory. Direct limits are dual to inverse limits which are a special case of limits in category theory.




Contents






  • 1 Formal definition


    • 1.1 Direct limits of algebraic objects


    • 1.2 Direct limits in an arbitrary category




  • 2 Examples


  • 3 Properties


  • 4 Related constructions and generalizations


  • 5 Terminology


  • 6 See also


  • 7 Notes


  • 8 References





Formal definition


We will first give the definition for algebraic structures like groups and modules, and then the general definition, which can be used in any category.



Direct limits of algebraic objects


In this section objects are understood to consist of underlying sets with a given algebraic structure, such as groups, rings, modules (over a fixed ring), algebras (over a fixed field), etc. With this in mind, homomorphisms are understood in the corresponding setting (group homomorphisms, etc.).


Let I,≤{displaystyle langle I,leq rangle }langle I,leq rangle be a directed set. Let {Ai:i∈I}{displaystyle {A_{i}:iin I}}{A_{i}:iin I} be a family of objects indexed by I{displaystyle I,}I, and fij:Ai→Aj{displaystyle f_{ij}colon A_{i}rightarrow A_{j}} f_{ij}colon A_i rightarrow A_j be a homomorphism for all i≤j{displaystyle ileq j}ileq j with the following properties:




  1. fii{displaystyle f_{ii},}f_{{ii}}, is the identity of Ai{displaystyle A_{i},}A_{i},, and


  2. fik=fjk∘fij{displaystyle f_{ik}=f_{jk}circ f_{ij}}f_{{ik}}=f_{{jk}}circ f_{{ij}} for all i≤j≤k{displaystyle ileq jleq k}ileq jleq k.


Then the pair Ai,fij⟩{displaystyle langle A_{i},f_{ij}rangle }langle A_{i},f_{{ij}}rangle is called a direct system over I{displaystyle I}I.


The direct limit of the direct system Ai,fij⟩{displaystyle langle A_{i},f_{ij}rangle }langle A_{i},f_{{ij}}rangle is denoted by lim→Ai{displaystyle varinjlim A_{i}}{displaystyle varinjlim A_{i}} and is defined as follows. Its underlying set is the disjoint union of the Ai{displaystyle A_{i},}A_{i},'s modulo a certain equivalence relation {displaystyle sim ,}sim ,:


lim→Ai=⨆iAi/∼.{displaystyle varinjlim A_{i}=bigsqcup _{i}A_{i}{bigg /}sim .}varinjlim A_{i}=bigsqcup _{i}A_{i}{bigg /}sim .

Here, if xi∈Ai{displaystyle x_{i}in A_{i}}x_{i}in A_{i} and xj∈Aj{displaystyle x_{j}in A_{j}}x_{j}in A_{j}, then xi∼xj{displaystyle x_{i}sim ,x_{j}}x_{i}sim ,x_{j} iff there is some k∈I{displaystyle kin I}kin I with i≤k{displaystyle ileq k}i le k and j≤k{displaystyle jleq k}{displaystyle jleq k} and such that fik(xi)=fjk(xj){displaystyle f_{ik}(x_{i})=f_{jk}(x_{j}),}f_{{ik}}(x_{i})=f_{{jk}}(x_{j}),.
Heuristically, two elements in the disjoint union are equivalent if and only if they "eventually become equal" in the direct system. An equivalent formulation that highlights the duality to the inverse limit is that an element is equivalent to all its images under the maps of the direct system, i.e. xi∼fij(xi){displaystyle x_{i}sim ,f_{ij}(x_{i})}{displaystyle x_{i}sim ,f_{ij}(x_{i})} whenever i≤j{displaystyle ileq j}ileq j.


One naturally obtains from this definition canonical functions ϕi:Ai→lim→Ai{displaystyle phi _{i}colon A_{i}rightarrow varinjlim A_{i}}{displaystyle phi _{i}colon A_{i}rightarrow varinjlim A_{i}} sending each element to its equivalence class. The algebraic operations on lim→Ai{displaystyle varinjlim A_{i},}{displaystyle varinjlim A_{i},} are defined such that these maps become homomorphisms. Formally, the direct limit of the direct system Ai,fij⟩{displaystyle langle A_{i},f_{ij}rangle }langle A_{i},f_{{ij}}rangle consists of the object lim→Ai{displaystyle varinjlim A_{i}}{displaystyle varinjlim A_{i}} together with the canonical homomorphisms ϕi:Ai→lim→Ai{displaystyle phi _{i}colon A_{i}rightarrow varinjlim A_{i}}{displaystyle phi _{i}colon A_{i}rightarrow varinjlim A_{i}}.



Direct limits in an arbitrary category


The direct limit can be defined in an arbitrary category C{displaystyle {mathcal {C}}}{mathcal {C}} by means of a universal property. Let Xi,fij⟩{displaystyle langle X_{i},f_{ij}rangle }langle X_{i},f_{{ij}}rangle be a direct system of objects and morphisms in C{displaystyle {mathcal {C}}}{mathcal {C}} (as defined above). A target is a pair X,ϕi⟩{displaystyle langle X,phi _{i}rangle }langle X,phi _{i}rangle where X{displaystyle X,}X, is an object in C{displaystyle {mathcal {C}}}{mathcal {C}} and ϕi:Xi→X{displaystyle phi _{i}colon X_{i}rightarrow X}phi_icolon X_irightarrow X are morphisms for each i∈I{displaystyle iin I}iin I such that ϕi=ϕj∘fij{displaystyle phi _{i}=phi _{j}circ f_{ij}}phi _{i}=phi _{j}circ f_{{ij}} whenever i≤j{displaystyle ileq j}ileq j. A direct limit of the direct system Xi,fij⟩{displaystyle langle X_{i},f_{ij}rangle }langle X_{i},f_{{ij}}rangle is a universally repelling target X,ϕi⟩{displaystyle langle X,phi _{i}rangle }langle X,phi _{i}rangle in the sense that X,ϕi⟩{displaystyle langle X,phi _{i}rangle }langle X,phi _{i}rangle is a target and for each target Y,ψi⟩{displaystyle langle Y,psi _{i}rangle }langle Y,psi _{i}rangle , there is a unique morphism u:X→Y{displaystyle ucolon Xrightarrow Y} ucolon Xrightarrow Y such that u∘ϕi=ψi{displaystyle ucirc phi _{i}=psi _{i}}{displaystyle ucirc phi _{i}=psi _{i}} for each i. The following diagram


Direct limit category.svg

will then commute for all i, j.


The direct limit is often denoted


X=lim→Xi{displaystyle X=varinjlim X_{i}}X=varinjlim X_{i}

with the direct system Xi,fij⟩{displaystyle langle X_{i},f_{ij}rangle }langle X_{i},f_{{ij}}rangle and the canonical morphisms ϕi{displaystyle phi _{i}}phi _{i} being understood.


Unlike for algebraic objects, not every direct system in an arbitrary category has a direct limit. If it does, however, the direct limit is unique in a strong sense: given another direct limit X′ there exists a unique isomorphism X′ → X that commutes with the canonical morphisms.



Examples



  • A collection of subsets Mi{displaystyle M_{i}}M_{i} of a set M can be partially ordered by inclusion. If the collection is directed, its direct limit is the union Mi{displaystyle bigcup M_{i}}bigcup M_{i}. The same is true for a directed collection of subgroups of a given group, or a directed collection of subrings of a given ring, etc.

  • Let I be any directed set with a greatest element m. The direct limit of any corresponding direct system is isomorphic to Xm and the canonical morphism φm: XmX is an isomorphism.

  • Let K be a field. For a positive integer n, consider the general linear group GL(n;K) consisting of invertible n x n - matrices with entries from K. We have a group homomorphism GL(n;K) → GL(n+1;K) which enlarges matrices by putting a 1 in the lower right corner and zeros elsewhere in the last row and column. The direct limit of this system is the general linear group of K, written as GL(K). An element of GL(K) can be thought off as an infinite invertible matrix which differs from the infinite identity matrix in only finitely many entries. The group GL(K) is of vital importance in algebraic K-theory.

  • Let p be a prime number. Consider the direct system composed of the factor groups Z/pnZ and the homomorphisms Z/pnZZ/pn+1Z induced by multiplication by p. The direct limit of this system consists of all the roots of unity of order some power of p, and is called the Prüfer group Z(p).

  • There is a (non-obvious) injective ring homomorphism from the ring of symmetric polynomials in n variables to the ring of symmetric polynomials in n+1 variables. Forming the direct limit of this direct system yields the ring of symmetric functions.

  • Let F be a C-valued sheaf on a topological space X. Fix a point x in X. The open neighborhoods of x form a directed set ordered by inclusion (UV if and only if U contains V). The corresponding direct system is (F(U), rU,V) where r is the restriction map. The direct limit of this system is called the stalk of F at x, denoted Fx. For each neighborhood U of x, the canonical morphism F(U) → Fx associates to a section s of F over U an element sx of the stalk Fx called the germ of s at x.

  • Direct limits in the category of topological spaces are given by placing the final topology on the underlying set-theoretic direct limit.



Properties


Direct limits are linked to inverse limits via


Hom(lim→Xi,Y)=lim←Hom(Xi,Y).{displaystyle mathrm {Hom} (varinjlim X_{i},Y)=varprojlim mathrm {Hom} (X_{i},Y).}{mathrm  {Hom}}(varinjlim X_{i},Y)=varprojlim {mathrm  {Hom}}(X_{i},Y).

An important property is that taking direct limits in the category of modules is an exact functor. This means that if you start with a directed system of short exact sequences 0→Ai→Bi→Ci→0{displaystyle 0to A_{i}to B_{i}to C_{i}to 0}{displaystyle 0to A_{i}to B_{i}to C_{i}to 0} and form direct limits, you obtain a short exact sequence 0→lim→Ai→lim→Bi→lim→Ci→0{displaystyle 0to varinjlim A_{i}to varinjlim B_{i}to varinjlim C_{i}to 0}{displaystyle 0to varinjlim A_{i}to varinjlim B_{i}to varinjlim C_{i}to 0}.



Related constructions and generalizations


We note that a direct system in a category C{displaystyle {mathcal {C}}}{mathcal {C}} admits an alternative description in terms of functors. Any directed set I,≤{displaystyle langle I,leq rangle }langle I,leq rangle can be considered as a small category I{displaystyle {mathcal {I}}}{mathcal {I}} whose objects are the elements I{displaystyle I}I and there is a morphisms i→j{displaystyle irightarrow j}irightarrow j if and only if i≤j{displaystyle ileq j}ileq j. A direct system over I{displaystyle I}I is then the same as a covariant functor I→C{displaystyle {mathcal {I}}rightarrow {mathcal {C}}}{mathcal  {I}}rightarrow {mathcal  {C}}. The colimit of this functor is the same as the direct limit of the original direct system.


A notion closely related to direct limits are the filtered colimits. Here we start with a covariant functor J→C{displaystyle {mathcal {J}}to {mathcal {C}}}{displaystyle {mathcal {J}}to {mathcal {C}}} from a filtered category J{displaystyle {mathcal {J}}}{mathcal {J}} to some category C{displaystyle {mathcal {C}}}{mathcal {C}} and form the colimit of this functor. One can show that a category has all directed limits if and only if it has all filtered colimits, and a functor defined on such a category commutes with all direct limits if and only if it commutes with all filtered colimits.[1]


Given an arbitrary category C{displaystyle {mathcal {C}}}{mathcal {C}}, there may be direct systems in C{displaystyle {mathcal {C}}}{mathcal {C}} which don't have a direct limit in C{displaystyle {mathcal {C}}}{mathcal {C}} (consider for example the category of finite sets, or the category of finitely generated abelian groups). In this case, we can always embed C{displaystyle {mathcal {C}}}{mathcal {C}} into a category Ind(C){displaystyle {text{Ind}}({mathcal {C}})}{displaystyle {text{Ind}}({mathcal {C}})} in which all direct limits exist; the objects of Ind(C){displaystyle {text{Ind}}({mathcal {C}})}{displaystyle {text{Ind}}({mathcal {C}})} are called ind-objects of C{displaystyle {mathcal {C}}}{mathcal {C}}.


The categorical dual of the direct limit is called the inverse limit. As above, inverse limits can be viewed as limits of certain functors and are closely related to limits over cofiltered categories.



Terminology


In the literature, one finds the terms "directed limit", "direct inductive limit", "directed colimit", "direct colimit" and "inductive limit" for the concept of direct limit defined above. The term "inductive limit" is ambiguous however, as some authors use it for the general concept of colimit.



See also


  • Direct limits of groups


Notes





  1. ^ Adamek, J.; Rosicky, J. (1994). Locally Presentable and Accessible Categories. Cambridge University Press. p. 15..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}




References




  • Bourbaki, Nicolas (1968), Elements of mathematics. Theory of sets, Translated from French, Paris: Hermann, MR 0237342


  • Mac Lane, Saunders (1998), Categories for the Working Mathematician, Graduate Texts in Mathematics, 5 (2nd ed.), Springer-Verlag









這個網誌中的熱門文章

Tangent Lines Diagram Along Smooth Curve

Yusuf al-Mu'taman ibn Hud

Zucchini