Why does pd.as_matrix() change the values and the number of decimal places from the original data frame?
up vote
-1
down vote
favorite
I have a dataframe that consists of two decimal values and an Id:
When I apply the as matrix function on the x and y values it yields an array that looks like this:
coords = df.as_matrix(columns=['x', 'y'])
coords
yields:
array([[ 0.0703843 , 0.170845 ],
[ 0.07022078, 0.17150128],
[ 0.07208886, 0.17159163],
...,
[ 0.07162819, 0.17044404],
[ 0.06951432, 0.17096308],
[ 0.07104143, 0.17040137]])
This immediately seemed strange since the length of the decimal place were inconsistent but I just assumed pandas was doing some shortening for display purposes
But then when I tried to retrieve the IDs - I could only get one or zero matchs when they should all match:
ids =
for coord in coords:
try:
_id = df.loc[df['x'] == coord[0]]['id'][1]
ids.append(_id)
except:
pass
len(ids)
1
What I am trying to understand is why the pd.as_matrix function extracts a value from the data frame that cannot be referenced again, and if so how do retrieve the ids from the data frame.
Any help here would be appreciated.
Thanks
Edit
Bellow is an subset of the data frame in CSV:
,id,x,y
0,07379a26-2447-4fce-83ac-4784abf07389,0.07038429591623253,0.17084500318384327
1,f5cc3adb-0588-4705-b1a3-fe1b669b776f,0.07022078416348305,0.17150127781674332
2,b5a57ffe-8565-4443-9685-11675ce25dc4,0.07208886125821728,0.17159163002146055
3,940efcaa-6d9d-4b10-a0fe-d8ec8c1d9c7e,0.07057468050347501,0.1700482708522834
4,616d7794-565a-4d2d-98cb-334beb5b91ef,0.07057895306948389,0.170054305037284
5,e2d1819d-1f58-407d-9950-be0a0c00374b,0.07161607658023798,0.17013089473907284
6,6a739687-f9ad-47bd-8a4b-c47bc4b2aec6,0.070163429153604,0.16889764101717875
7,dd2df646-9a66-4baa-8815-d24f1858eda7,0.07035099968831582,0.16995622800529742
8,6a224d76-efea-4313-803d-c25b619dae0a,0.07066777462044714,0.17021849979554743
9,321147fa-ee51-4bab-9634-199c92a42d2f,0.06984869509314469,0.17098101436534555
10,e52d6289-01ba-4e7d-8054-bb9a349c0505,0.07068704829137691,0.17029718331066224
11,517f256b-6171-4d93-9b4b-0f81aac828fb,0.0713283119291569,0.16983952831019206
12,e339c742-9784-49fc-a435-790db0364229,0.07131341496221469,0.1698513011377732
13,6f20ad5a-22fb-43a2-8885-838e5161df14,0.06942397329210678,0.1716572235671854
14,f6e1008f-2b22-4d88-8c84-c0dc4f2d822e,0.06942427697939664,0.17165098925109726
15,8a2d35e5-10a2-4188-b98f-54200d2db8da,0.07048162129308791,0.16896051533992895
16,adab8fd8-4348-412d-85d2-01491886967b,0.07076495746208027,0.16966622176968035
17,df79523b-848b-45a9-8dab-fe53c2a5b62d,0.06988926585338372,0.17028143287771583
18,db05d97c-3b16-4da8-9659-820fc7e3f858,0.0713167479593096,0.1685149810693375
19,d43963d1-b803-473c-85dc-2ed2e9f77f4e,0.07045583812582461,0.1706502407290604
20,9d99c9a6-2de3-4e6a-9bd7-9d7ece358a2f,0.07044174575566758,0.17066067488910522
21,3eec44be-b9e2-45a2-b919-05028f5a0ba9,0.07079585677115756,0.16920818686920963
22,9f836847-2b67-4b33-930a-1f84452628ba,0.07078522829778934,0.16919781903167638
23,fbaa8958-a5d5-4dfb-91f7-8c11afe226a8,0.07128542860765898,0.16834798505762455
24,a84b59c4-4145-472d-a26a-4c930648c16c,0.07196635776157265,0.17047633495883885
25,29cf8ad3-7068-4207-b0a2-4f0cff337c9f,0.0719701195278871,0.17051442269732875
26,d0f512c8-5c4f-427a-99e1-ebb4c5b363e5,0.0718787509597688,0.17054903897593635
27,74b1db2d-002b-4f89-8d02-ac084e9a3cd5,0.07089130417373782,0.16981103290127117
28,89210a0c-8144-491d-9e98-19e7f4c3085e,0.07076060461092577,0.1707011426749184
29,aebb377e-7c26-4bb5-8563-c3055a027844,0.07103977816965212,0.17113978347674103
30,00b527a0-d40a-44b4-90f9-750fd447d2d7,0.07097785505134419,0.16963542019904118
31,8c186559-f50d-40ca-a821-11596e1e5261,0.06992637446216321,0.17110063865050085
32,0e64cf14-6ccd-4ad0-9715-ab410f6baf6a,0.0718311255786932,0.1705675237580442
33,f5479823-1efe-47b8-9977-73dc41d1d69e,0.07016981880399553,0.1703708437681898
34,385cfa13-2476-4e3d-b755-3063a7f802b9,0.07016550435008462,0.17037054473511137
35,a40bf573-b701-46f0-9a06-5857cf3ab199,0.0701443567773146,0.17035314147536326
36,0c5a9751-2c1b-4003-834d-9584d2f907a2,0.07016050805421256,0.17038992836178396
37,65b09067-9cf0-492d-8a70-13d4f92f8a10,0.07137336818557355,0.1684713798357405
python pandas numpy dataframe
add a comment |
up vote
-1
down vote
favorite
I have a dataframe that consists of two decimal values and an Id:
When I apply the as matrix function on the x and y values it yields an array that looks like this:
coords = df.as_matrix(columns=['x', 'y'])
coords
yields:
array([[ 0.0703843 , 0.170845 ],
[ 0.07022078, 0.17150128],
[ 0.07208886, 0.17159163],
...,
[ 0.07162819, 0.17044404],
[ 0.06951432, 0.17096308],
[ 0.07104143, 0.17040137]])
This immediately seemed strange since the length of the decimal place were inconsistent but I just assumed pandas was doing some shortening for display purposes
But then when I tried to retrieve the IDs - I could only get one or zero matchs when they should all match:
ids =
for coord in coords:
try:
_id = df.loc[df['x'] == coord[0]]['id'][1]
ids.append(_id)
except:
pass
len(ids)
1
What I am trying to understand is why the pd.as_matrix function extracts a value from the data frame that cannot be referenced again, and if so how do retrieve the ids from the data frame.
Any help here would be appreciated.
Thanks
Edit
Bellow is an subset of the data frame in CSV:
,id,x,y
0,07379a26-2447-4fce-83ac-4784abf07389,0.07038429591623253,0.17084500318384327
1,f5cc3adb-0588-4705-b1a3-fe1b669b776f,0.07022078416348305,0.17150127781674332
2,b5a57ffe-8565-4443-9685-11675ce25dc4,0.07208886125821728,0.17159163002146055
3,940efcaa-6d9d-4b10-a0fe-d8ec8c1d9c7e,0.07057468050347501,0.1700482708522834
4,616d7794-565a-4d2d-98cb-334beb5b91ef,0.07057895306948389,0.170054305037284
5,e2d1819d-1f58-407d-9950-be0a0c00374b,0.07161607658023798,0.17013089473907284
6,6a739687-f9ad-47bd-8a4b-c47bc4b2aec6,0.070163429153604,0.16889764101717875
7,dd2df646-9a66-4baa-8815-d24f1858eda7,0.07035099968831582,0.16995622800529742
8,6a224d76-efea-4313-803d-c25b619dae0a,0.07066777462044714,0.17021849979554743
9,321147fa-ee51-4bab-9634-199c92a42d2f,0.06984869509314469,0.17098101436534555
10,e52d6289-01ba-4e7d-8054-bb9a349c0505,0.07068704829137691,0.17029718331066224
11,517f256b-6171-4d93-9b4b-0f81aac828fb,0.0713283119291569,0.16983952831019206
12,e339c742-9784-49fc-a435-790db0364229,0.07131341496221469,0.1698513011377732
13,6f20ad5a-22fb-43a2-8885-838e5161df14,0.06942397329210678,0.1716572235671854
14,f6e1008f-2b22-4d88-8c84-c0dc4f2d822e,0.06942427697939664,0.17165098925109726
15,8a2d35e5-10a2-4188-b98f-54200d2db8da,0.07048162129308791,0.16896051533992895
16,adab8fd8-4348-412d-85d2-01491886967b,0.07076495746208027,0.16966622176968035
17,df79523b-848b-45a9-8dab-fe53c2a5b62d,0.06988926585338372,0.17028143287771583
18,db05d97c-3b16-4da8-9659-820fc7e3f858,0.0713167479593096,0.1685149810693375
19,d43963d1-b803-473c-85dc-2ed2e9f77f4e,0.07045583812582461,0.1706502407290604
20,9d99c9a6-2de3-4e6a-9bd7-9d7ece358a2f,0.07044174575566758,0.17066067488910522
21,3eec44be-b9e2-45a2-b919-05028f5a0ba9,0.07079585677115756,0.16920818686920963
22,9f836847-2b67-4b33-930a-1f84452628ba,0.07078522829778934,0.16919781903167638
23,fbaa8958-a5d5-4dfb-91f7-8c11afe226a8,0.07128542860765898,0.16834798505762455
24,a84b59c4-4145-472d-a26a-4c930648c16c,0.07196635776157265,0.17047633495883885
25,29cf8ad3-7068-4207-b0a2-4f0cff337c9f,0.0719701195278871,0.17051442269732875
26,d0f512c8-5c4f-427a-99e1-ebb4c5b363e5,0.0718787509597688,0.17054903897593635
27,74b1db2d-002b-4f89-8d02-ac084e9a3cd5,0.07089130417373782,0.16981103290127117
28,89210a0c-8144-491d-9e98-19e7f4c3085e,0.07076060461092577,0.1707011426749184
29,aebb377e-7c26-4bb5-8563-c3055a027844,0.07103977816965212,0.17113978347674103
30,00b527a0-d40a-44b4-90f9-750fd447d2d7,0.07097785505134419,0.16963542019904118
31,8c186559-f50d-40ca-a821-11596e1e5261,0.06992637446216321,0.17110063865050085
32,0e64cf14-6ccd-4ad0-9715-ab410f6baf6a,0.0718311255786932,0.1705675237580442
33,f5479823-1efe-47b8-9977-73dc41d1d69e,0.07016981880399553,0.1703708437681898
34,385cfa13-2476-4e3d-b755-3063a7f802b9,0.07016550435008462,0.17037054473511137
35,a40bf573-b701-46f0-9a06-5857cf3ab199,0.0701443567773146,0.17035314147536326
36,0c5a9751-2c1b-4003-834d-9584d2f907a2,0.07016050805421256,0.17038992836178396
37,65b09067-9cf0-492d-8a70-13d4f92f8a10,0.07137336818557355,0.1684713798357405
python pandas numpy dataframe
Also why are you using a bareexcept
clause? What error is occoruing that you are ignoring?
– FHTMitchell
Nov 7 at 10:23
I just ran similar code (with manually copied dataframe and notry/except
) and got no issues, every value matched. This sounds like a floating point rounding error. Trynp.isclose
rather than==
.
– FHTMitchell
Nov 7 at 10:27
@FHTMitchell Hi. The dataframe is not trivial to generate. I have included a subset in CSV. The error code is a key value error because the loc is returning an empty frame.
– Johny Mudly
Nov 7 at 12:02
@FHTMitchell Using a try except to see how many actually match.
– Johny Mudly
Nov 7 at 12:04
@FHTMitchell - You cant use np.isclose() in the df.loc function - so there is no way to locate it.
– Johny Mudly
Nov 7 at 12:32
add a comment |
up vote
-1
down vote
favorite
up vote
-1
down vote
favorite
I have a dataframe that consists of two decimal values and an Id:
When I apply the as matrix function on the x and y values it yields an array that looks like this:
coords = df.as_matrix(columns=['x', 'y'])
coords
yields:
array([[ 0.0703843 , 0.170845 ],
[ 0.07022078, 0.17150128],
[ 0.07208886, 0.17159163],
...,
[ 0.07162819, 0.17044404],
[ 0.06951432, 0.17096308],
[ 0.07104143, 0.17040137]])
This immediately seemed strange since the length of the decimal place were inconsistent but I just assumed pandas was doing some shortening for display purposes
But then when I tried to retrieve the IDs - I could only get one or zero matchs when they should all match:
ids =
for coord in coords:
try:
_id = df.loc[df['x'] == coord[0]]['id'][1]
ids.append(_id)
except:
pass
len(ids)
1
What I am trying to understand is why the pd.as_matrix function extracts a value from the data frame that cannot be referenced again, and if so how do retrieve the ids from the data frame.
Any help here would be appreciated.
Thanks
Edit
Bellow is an subset of the data frame in CSV:
,id,x,y
0,07379a26-2447-4fce-83ac-4784abf07389,0.07038429591623253,0.17084500318384327
1,f5cc3adb-0588-4705-b1a3-fe1b669b776f,0.07022078416348305,0.17150127781674332
2,b5a57ffe-8565-4443-9685-11675ce25dc4,0.07208886125821728,0.17159163002146055
3,940efcaa-6d9d-4b10-a0fe-d8ec8c1d9c7e,0.07057468050347501,0.1700482708522834
4,616d7794-565a-4d2d-98cb-334beb5b91ef,0.07057895306948389,0.170054305037284
5,e2d1819d-1f58-407d-9950-be0a0c00374b,0.07161607658023798,0.17013089473907284
6,6a739687-f9ad-47bd-8a4b-c47bc4b2aec6,0.070163429153604,0.16889764101717875
7,dd2df646-9a66-4baa-8815-d24f1858eda7,0.07035099968831582,0.16995622800529742
8,6a224d76-efea-4313-803d-c25b619dae0a,0.07066777462044714,0.17021849979554743
9,321147fa-ee51-4bab-9634-199c92a42d2f,0.06984869509314469,0.17098101436534555
10,e52d6289-01ba-4e7d-8054-bb9a349c0505,0.07068704829137691,0.17029718331066224
11,517f256b-6171-4d93-9b4b-0f81aac828fb,0.0713283119291569,0.16983952831019206
12,e339c742-9784-49fc-a435-790db0364229,0.07131341496221469,0.1698513011377732
13,6f20ad5a-22fb-43a2-8885-838e5161df14,0.06942397329210678,0.1716572235671854
14,f6e1008f-2b22-4d88-8c84-c0dc4f2d822e,0.06942427697939664,0.17165098925109726
15,8a2d35e5-10a2-4188-b98f-54200d2db8da,0.07048162129308791,0.16896051533992895
16,adab8fd8-4348-412d-85d2-01491886967b,0.07076495746208027,0.16966622176968035
17,df79523b-848b-45a9-8dab-fe53c2a5b62d,0.06988926585338372,0.17028143287771583
18,db05d97c-3b16-4da8-9659-820fc7e3f858,0.0713167479593096,0.1685149810693375
19,d43963d1-b803-473c-85dc-2ed2e9f77f4e,0.07045583812582461,0.1706502407290604
20,9d99c9a6-2de3-4e6a-9bd7-9d7ece358a2f,0.07044174575566758,0.17066067488910522
21,3eec44be-b9e2-45a2-b919-05028f5a0ba9,0.07079585677115756,0.16920818686920963
22,9f836847-2b67-4b33-930a-1f84452628ba,0.07078522829778934,0.16919781903167638
23,fbaa8958-a5d5-4dfb-91f7-8c11afe226a8,0.07128542860765898,0.16834798505762455
24,a84b59c4-4145-472d-a26a-4c930648c16c,0.07196635776157265,0.17047633495883885
25,29cf8ad3-7068-4207-b0a2-4f0cff337c9f,0.0719701195278871,0.17051442269732875
26,d0f512c8-5c4f-427a-99e1-ebb4c5b363e5,0.0718787509597688,0.17054903897593635
27,74b1db2d-002b-4f89-8d02-ac084e9a3cd5,0.07089130417373782,0.16981103290127117
28,89210a0c-8144-491d-9e98-19e7f4c3085e,0.07076060461092577,0.1707011426749184
29,aebb377e-7c26-4bb5-8563-c3055a027844,0.07103977816965212,0.17113978347674103
30,00b527a0-d40a-44b4-90f9-750fd447d2d7,0.07097785505134419,0.16963542019904118
31,8c186559-f50d-40ca-a821-11596e1e5261,0.06992637446216321,0.17110063865050085
32,0e64cf14-6ccd-4ad0-9715-ab410f6baf6a,0.0718311255786932,0.1705675237580442
33,f5479823-1efe-47b8-9977-73dc41d1d69e,0.07016981880399553,0.1703708437681898
34,385cfa13-2476-4e3d-b755-3063a7f802b9,0.07016550435008462,0.17037054473511137
35,a40bf573-b701-46f0-9a06-5857cf3ab199,0.0701443567773146,0.17035314147536326
36,0c5a9751-2c1b-4003-834d-9584d2f907a2,0.07016050805421256,0.17038992836178396
37,65b09067-9cf0-492d-8a70-13d4f92f8a10,0.07137336818557355,0.1684713798357405
python pandas numpy dataframe
I have a dataframe that consists of two decimal values and an Id:
When I apply the as matrix function on the x and y values it yields an array that looks like this:
coords = df.as_matrix(columns=['x', 'y'])
coords
yields:
array([[ 0.0703843 , 0.170845 ],
[ 0.07022078, 0.17150128],
[ 0.07208886, 0.17159163],
...,
[ 0.07162819, 0.17044404],
[ 0.06951432, 0.17096308],
[ 0.07104143, 0.17040137]])
This immediately seemed strange since the length of the decimal place were inconsistent but I just assumed pandas was doing some shortening for display purposes
But then when I tried to retrieve the IDs - I could only get one or zero matchs when they should all match:
ids =
for coord in coords:
try:
_id = df.loc[df['x'] == coord[0]]['id'][1]
ids.append(_id)
except:
pass
len(ids)
1
What I am trying to understand is why the pd.as_matrix function extracts a value from the data frame that cannot be referenced again, and if so how do retrieve the ids from the data frame.
Any help here would be appreciated.
Thanks
Edit
Bellow is an subset of the data frame in CSV:
,id,x,y
0,07379a26-2447-4fce-83ac-4784abf07389,0.07038429591623253,0.17084500318384327
1,f5cc3adb-0588-4705-b1a3-fe1b669b776f,0.07022078416348305,0.17150127781674332
2,b5a57ffe-8565-4443-9685-11675ce25dc4,0.07208886125821728,0.17159163002146055
3,940efcaa-6d9d-4b10-a0fe-d8ec8c1d9c7e,0.07057468050347501,0.1700482708522834
4,616d7794-565a-4d2d-98cb-334beb5b91ef,0.07057895306948389,0.170054305037284
5,e2d1819d-1f58-407d-9950-be0a0c00374b,0.07161607658023798,0.17013089473907284
6,6a739687-f9ad-47bd-8a4b-c47bc4b2aec6,0.070163429153604,0.16889764101717875
7,dd2df646-9a66-4baa-8815-d24f1858eda7,0.07035099968831582,0.16995622800529742
8,6a224d76-efea-4313-803d-c25b619dae0a,0.07066777462044714,0.17021849979554743
9,321147fa-ee51-4bab-9634-199c92a42d2f,0.06984869509314469,0.17098101436534555
10,e52d6289-01ba-4e7d-8054-bb9a349c0505,0.07068704829137691,0.17029718331066224
11,517f256b-6171-4d93-9b4b-0f81aac828fb,0.0713283119291569,0.16983952831019206
12,e339c742-9784-49fc-a435-790db0364229,0.07131341496221469,0.1698513011377732
13,6f20ad5a-22fb-43a2-8885-838e5161df14,0.06942397329210678,0.1716572235671854
14,f6e1008f-2b22-4d88-8c84-c0dc4f2d822e,0.06942427697939664,0.17165098925109726
15,8a2d35e5-10a2-4188-b98f-54200d2db8da,0.07048162129308791,0.16896051533992895
16,adab8fd8-4348-412d-85d2-01491886967b,0.07076495746208027,0.16966622176968035
17,df79523b-848b-45a9-8dab-fe53c2a5b62d,0.06988926585338372,0.17028143287771583
18,db05d97c-3b16-4da8-9659-820fc7e3f858,0.0713167479593096,0.1685149810693375
19,d43963d1-b803-473c-85dc-2ed2e9f77f4e,0.07045583812582461,0.1706502407290604
20,9d99c9a6-2de3-4e6a-9bd7-9d7ece358a2f,0.07044174575566758,0.17066067488910522
21,3eec44be-b9e2-45a2-b919-05028f5a0ba9,0.07079585677115756,0.16920818686920963
22,9f836847-2b67-4b33-930a-1f84452628ba,0.07078522829778934,0.16919781903167638
23,fbaa8958-a5d5-4dfb-91f7-8c11afe226a8,0.07128542860765898,0.16834798505762455
24,a84b59c4-4145-472d-a26a-4c930648c16c,0.07196635776157265,0.17047633495883885
25,29cf8ad3-7068-4207-b0a2-4f0cff337c9f,0.0719701195278871,0.17051442269732875
26,d0f512c8-5c4f-427a-99e1-ebb4c5b363e5,0.0718787509597688,0.17054903897593635
27,74b1db2d-002b-4f89-8d02-ac084e9a3cd5,0.07089130417373782,0.16981103290127117
28,89210a0c-8144-491d-9e98-19e7f4c3085e,0.07076060461092577,0.1707011426749184
29,aebb377e-7c26-4bb5-8563-c3055a027844,0.07103977816965212,0.17113978347674103
30,00b527a0-d40a-44b4-90f9-750fd447d2d7,0.07097785505134419,0.16963542019904118
31,8c186559-f50d-40ca-a821-11596e1e5261,0.06992637446216321,0.17110063865050085
32,0e64cf14-6ccd-4ad0-9715-ab410f6baf6a,0.0718311255786932,0.1705675237580442
33,f5479823-1efe-47b8-9977-73dc41d1d69e,0.07016981880399553,0.1703708437681898
34,385cfa13-2476-4e3d-b755-3063a7f802b9,0.07016550435008462,0.17037054473511137
35,a40bf573-b701-46f0-9a06-5857cf3ab199,0.0701443567773146,0.17035314147536326
36,0c5a9751-2c1b-4003-834d-9584d2f907a2,0.07016050805421256,0.17038992836178396
37,65b09067-9cf0-492d-8a70-13d4f92f8a10,0.07137336818557355,0.1684713798357405
python pandas numpy dataframe
python pandas numpy dataframe
edited Nov 7 at 12:00
asked Nov 7 at 10:14
Johny Mudly
137
137
Also why are you using a bareexcept
clause? What error is occoruing that you are ignoring?
– FHTMitchell
Nov 7 at 10:23
I just ran similar code (with manually copied dataframe and notry/except
) and got no issues, every value matched. This sounds like a floating point rounding error. Trynp.isclose
rather than==
.
– FHTMitchell
Nov 7 at 10:27
@FHTMitchell Hi. The dataframe is not trivial to generate. I have included a subset in CSV. The error code is a key value error because the loc is returning an empty frame.
– Johny Mudly
Nov 7 at 12:02
@FHTMitchell Using a try except to see how many actually match.
– Johny Mudly
Nov 7 at 12:04
@FHTMitchell - You cant use np.isclose() in the df.loc function - so there is no way to locate it.
– Johny Mudly
Nov 7 at 12:32
add a comment |
Also why are you using a bareexcept
clause? What error is occoruing that you are ignoring?
– FHTMitchell
Nov 7 at 10:23
I just ran similar code (with manually copied dataframe and notry/except
) and got no issues, every value matched. This sounds like a floating point rounding error. Trynp.isclose
rather than==
.
– FHTMitchell
Nov 7 at 10:27
@FHTMitchell Hi. The dataframe is not trivial to generate. I have included a subset in CSV. The error code is a key value error because the loc is returning an empty frame.
– Johny Mudly
Nov 7 at 12:02
@FHTMitchell Using a try except to see how many actually match.
– Johny Mudly
Nov 7 at 12:04
@FHTMitchell - You cant use np.isclose() in the df.loc function - so there is no way to locate it.
– Johny Mudly
Nov 7 at 12:32
Also why are you using a bare
except
clause? What error is occoruing that you are ignoring?– FHTMitchell
Nov 7 at 10:23
Also why are you using a bare
except
clause? What error is occoruing that you are ignoring?– FHTMitchell
Nov 7 at 10:23
I just ran similar code (with manually copied dataframe and no
try/except
) and got no issues, every value matched. This sounds like a floating point rounding error. Try np.isclose
rather than ==
.– FHTMitchell
Nov 7 at 10:27
I just ran similar code (with manually copied dataframe and no
try/except
) and got no issues, every value matched. This sounds like a floating point rounding error. Try np.isclose
rather than ==
.– FHTMitchell
Nov 7 at 10:27
@FHTMitchell Hi. The dataframe is not trivial to generate. I have included a subset in CSV. The error code is a key value error because the loc is returning an empty frame.
– Johny Mudly
Nov 7 at 12:02
@FHTMitchell Hi. The dataframe is not trivial to generate. I have included a subset in CSV. The error code is a key value error because the loc is returning an empty frame.
– Johny Mudly
Nov 7 at 12:02
@FHTMitchell Using a try except to see how many actually match.
– Johny Mudly
Nov 7 at 12:04
@FHTMitchell Using a try except to see how many actually match.
– Johny Mudly
Nov 7 at 12:04
@FHTMitchell - You cant use np.isclose() in the df.loc function - so there is no way to locate it.
– Johny Mudly
Nov 7 at 12:32
@FHTMitchell - You cant use np.isclose() in the df.loc function - so there is no way to locate it.
– Johny Mudly
Nov 7 at 12:32
add a comment |
1 Answer
1
active
oldest
votes
up vote
0
down vote
accepted
The issue is with the df.loc function on geo-dataframes.
Once I exported it to a csv, then re read the dataframe in using normal pandas it seemed to work just fine.
Just letting who finds this know.
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
accepted
The issue is with the df.loc function on geo-dataframes.
Once I exported it to a csv, then re read the dataframe in using normal pandas it seemed to work just fine.
Just letting who finds this know.
add a comment |
up vote
0
down vote
accepted
The issue is with the df.loc function on geo-dataframes.
Once I exported it to a csv, then re read the dataframe in using normal pandas it seemed to work just fine.
Just letting who finds this know.
add a comment |
up vote
0
down vote
accepted
up vote
0
down vote
accepted
The issue is with the df.loc function on geo-dataframes.
Once I exported it to a csv, then re read the dataframe in using normal pandas it seemed to work just fine.
Just letting who finds this know.
The issue is with the df.loc function on geo-dataframes.
Once I exported it to a csv, then re read the dataframe in using normal pandas it seemed to work just fine.
Just letting who finds this know.
answered Nov 7 at 12:55
Johny Mudly
137
137
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53187390%2fwhy-does-pd-as-matrix-change-the-values-and-the-number-of-decimal-places-from%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Also why are you using a bare
except
clause? What error is occoruing that you are ignoring?– FHTMitchell
Nov 7 at 10:23
I just ran similar code (with manually copied dataframe and no
try/except
) and got no issues, every value matched. This sounds like a floating point rounding error. Trynp.isclose
rather than==
.– FHTMitchell
Nov 7 at 10:27
@FHTMitchell Hi. The dataframe is not trivial to generate. I have included a subset in CSV. The error code is a key value error because the loc is returning an empty frame.
– Johny Mudly
Nov 7 at 12:02
@FHTMitchell Using a try except to see how many actually match.
– Johny Mudly
Nov 7 at 12:04
@FHTMitchell - You cant use np.isclose() in the df.loc function - so there is no way to locate it.
– Johny Mudly
Nov 7 at 12:32