On an expected value inequality.












6














Given $X$ a random variable that takes values on all of $mathbb{R}$ with associated probability density function $f$ is it true that for all $r > 0$



$$E left[ int_{X-r}^{X+r} f(x) dx right] ge E left[ int_{X-r}^{X+r} g(x) dx right]$$



for any other probability density function $g$ ?



This seems intuitively true to me and I imagine if it were to be true that it has been proven but I can't find a similar result on the standard textbooks, even a reference is welcome.










share|cite|improve this question





























    6














    Given $X$ a random variable that takes values on all of $mathbb{R}$ with associated probability density function $f$ is it true that for all $r > 0$



    $$E left[ int_{X-r}^{X+r} f(x) dx right] ge E left[ int_{X-r}^{X+r} g(x) dx right]$$



    for any other probability density function $g$ ?



    This seems intuitively true to me and I imagine if it were to be true that it has been proven but I can't find a similar result on the standard textbooks, even a reference is welcome.










    share|cite|improve this question



























      6












      6








      6


      1





      Given $X$ a random variable that takes values on all of $mathbb{R}$ with associated probability density function $f$ is it true that for all $r > 0$



      $$E left[ int_{X-r}^{X+r} f(x) dx right] ge E left[ int_{X-r}^{X+r} g(x) dx right]$$



      for any other probability density function $g$ ?



      This seems intuitively true to me and I imagine if it were to be true that it has been proven but I can't find a similar result on the standard textbooks, even a reference is welcome.










      share|cite|improve this question















      Given $X$ a random variable that takes values on all of $mathbb{R}$ with associated probability density function $f$ is it true that for all $r > 0$



      $$E left[ int_{X-r}^{X+r} f(x) dx right] ge E left[ int_{X-r}^{X+r} g(x) dx right]$$



      for any other probability density function $g$ ?



      This seems intuitively true to me and I imagine if it were to be true that it has been proven but I can't find a similar result on the standard textbooks, even a reference is welcome.







      probability integration probability-theory inequality






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 10 at 20:24

























      asked Nov 10 at 17:17









      Monolite

      1,5062925




      1,5062925






















          2 Answers
          2






          active

          oldest

          votes


















          6














          Taking the particular case of small $r$ ($r to 0$) and continuous $f$, your inequality turns equivalent to



          $$ int f^2 ge int f g $$



          with the restrictions $int f = int g = 1$ and $fge 0$, $gge 0$. This is clearly false. For a fixed $f$ we maximize $int f g$, not by choosing $g=f$, but by choosing $g$ concentrated around the mode (maximum) of $f$.



          Incidentally, your assertion has a simple interpretation: suppose I have to guess the value of a random variable $x$ with pdf $f$, so that I win if the absolute error $e=|x- hat x|$ is less than $r$. If the inequality were true, then the conclusion would be that my best estrategy (in terms of expected win rate) is to make a random guess , by drawing my $hat x$ as an independent random variable with the same density as $x$. But this is not true, the optimal guess is to choose a deterministic value, that which maximizes the respective integral; for small $r$ this is the mode of $f$ (maximum a posteriori).






          share|cite|improve this answer































            3














            Unfortunately, your intuitive conjecture is INCORRECT.



            Let $f(x)$ be the PDF of the random variable $X$ and $F(x)$ be its cumulative PDF, so that $F'(x)=f(x)$, or
            $$F(x)=int_{-infty}^x f(t)dt$$
            Similarly, let $g(x)$ be another PDF with cumulative PDF $G(x)$. Then the expected value of the integral
            $$int_{X-r}^{X+r} g(x)dx$$
            is equal to
            $$int_{-infty}^infty int_{x-r}^{x+r} f(x)g(t)dtdx=int_{-infty}^infty (G(x+r)-G(x-r))f(x)dx$$
            By using integration by parts, we have that
            $$int_{-infty}^infty (G(x+r)-G(x-r))f(x)dx=int_{-infty}^infty (F(x+r)-F(x-r))g(x)dx$$
            Consider this simple counterexample. Let $r=1$, and suppose that
            $$f(x)=frac{1}{pi}frac{1}{1+x^2}$$
            Then, if your conjecture is true, for no function $g$ will the integral
            $$frac{1}{pi}int_{-infty}^infty (arctan(x+1)-arctan(x-1))g(x)dx$$
            even surpass the value
            $$frac{1}{pi^2}int_{-infty}^infty frac{arctan(x+1)-arctan(x-1)}{1+x^2}dxapprox 0.1475$$
            However, suppose that we let
            $$g(x)=frac{4}{pi}frac{1}{1+4x^2}$$
            Then the value of our integral is equal to
            $$frac{4}{pi^2}int_{-infty}^infty frac{arctan(x+1)-arctan(x-1)}{1+4x^2}dxapprox 0.3743$$
            which disproves your conjecture.






            share|cite|improve this answer





















              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2992859%2fon-an-expected-value-inequality%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              6














              Taking the particular case of small $r$ ($r to 0$) and continuous $f$, your inequality turns equivalent to



              $$ int f^2 ge int f g $$



              with the restrictions $int f = int g = 1$ and $fge 0$, $gge 0$. This is clearly false. For a fixed $f$ we maximize $int f g$, not by choosing $g=f$, but by choosing $g$ concentrated around the mode (maximum) of $f$.



              Incidentally, your assertion has a simple interpretation: suppose I have to guess the value of a random variable $x$ with pdf $f$, so that I win if the absolute error $e=|x- hat x|$ is less than $r$. If the inequality were true, then the conclusion would be that my best estrategy (in terms of expected win rate) is to make a random guess , by drawing my $hat x$ as an independent random variable with the same density as $x$. But this is not true, the optimal guess is to choose a deterministic value, that which maximizes the respective integral; for small $r$ this is the mode of $f$ (maximum a posteriori).






              share|cite|improve this answer




























                6














                Taking the particular case of small $r$ ($r to 0$) and continuous $f$, your inequality turns equivalent to



                $$ int f^2 ge int f g $$



                with the restrictions $int f = int g = 1$ and $fge 0$, $gge 0$. This is clearly false. For a fixed $f$ we maximize $int f g$, not by choosing $g=f$, but by choosing $g$ concentrated around the mode (maximum) of $f$.



                Incidentally, your assertion has a simple interpretation: suppose I have to guess the value of a random variable $x$ with pdf $f$, so that I win if the absolute error $e=|x- hat x|$ is less than $r$. If the inequality were true, then the conclusion would be that my best estrategy (in terms of expected win rate) is to make a random guess , by drawing my $hat x$ as an independent random variable with the same density as $x$. But this is not true, the optimal guess is to choose a deterministic value, that which maximizes the respective integral; for small $r$ this is the mode of $f$ (maximum a posteriori).






                share|cite|improve this answer


























                  6












                  6








                  6






                  Taking the particular case of small $r$ ($r to 0$) and continuous $f$, your inequality turns equivalent to



                  $$ int f^2 ge int f g $$



                  with the restrictions $int f = int g = 1$ and $fge 0$, $gge 0$. This is clearly false. For a fixed $f$ we maximize $int f g$, not by choosing $g=f$, but by choosing $g$ concentrated around the mode (maximum) of $f$.



                  Incidentally, your assertion has a simple interpretation: suppose I have to guess the value of a random variable $x$ with pdf $f$, so that I win if the absolute error $e=|x- hat x|$ is less than $r$. If the inequality were true, then the conclusion would be that my best estrategy (in terms of expected win rate) is to make a random guess , by drawing my $hat x$ as an independent random variable with the same density as $x$. But this is not true, the optimal guess is to choose a deterministic value, that which maximizes the respective integral; for small $r$ this is the mode of $f$ (maximum a posteriori).






                  share|cite|improve this answer














                  Taking the particular case of small $r$ ($r to 0$) and continuous $f$, your inequality turns equivalent to



                  $$ int f^2 ge int f g $$



                  with the restrictions $int f = int g = 1$ and $fge 0$, $gge 0$. This is clearly false. For a fixed $f$ we maximize $int f g$, not by choosing $g=f$, but by choosing $g$ concentrated around the mode (maximum) of $f$.



                  Incidentally, your assertion has a simple interpretation: suppose I have to guess the value of a random variable $x$ with pdf $f$, so that I win if the absolute error $e=|x- hat x|$ is less than $r$. If the inequality were true, then the conclusion would be that my best estrategy (in terms of expected win rate) is to make a random guess , by drawing my $hat x$ as an independent random variable with the same density as $x$. But this is not true, the optimal guess is to choose a deterministic value, that which maximizes the respective integral; for small $r$ this is the mode of $f$ (maximum a posteriori).







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Nov 10 at 19:23

























                  answered Nov 10 at 18:46









                  leonbloy

                  40.2k645107




                  40.2k645107























                      3














                      Unfortunately, your intuitive conjecture is INCORRECT.



                      Let $f(x)$ be the PDF of the random variable $X$ and $F(x)$ be its cumulative PDF, so that $F'(x)=f(x)$, or
                      $$F(x)=int_{-infty}^x f(t)dt$$
                      Similarly, let $g(x)$ be another PDF with cumulative PDF $G(x)$. Then the expected value of the integral
                      $$int_{X-r}^{X+r} g(x)dx$$
                      is equal to
                      $$int_{-infty}^infty int_{x-r}^{x+r} f(x)g(t)dtdx=int_{-infty}^infty (G(x+r)-G(x-r))f(x)dx$$
                      By using integration by parts, we have that
                      $$int_{-infty}^infty (G(x+r)-G(x-r))f(x)dx=int_{-infty}^infty (F(x+r)-F(x-r))g(x)dx$$
                      Consider this simple counterexample. Let $r=1$, and suppose that
                      $$f(x)=frac{1}{pi}frac{1}{1+x^2}$$
                      Then, if your conjecture is true, for no function $g$ will the integral
                      $$frac{1}{pi}int_{-infty}^infty (arctan(x+1)-arctan(x-1))g(x)dx$$
                      even surpass the value
                      $$frac{1}{pi^2}int_{-infty}^infty frac{arctan(x+1)-arctan(x-1)}{1+x^2}dxapprox 0.1475$$
                      However, suppose that we let
                      $$g(x)=frac{4}{pi}frac{1}{1+4x^2}$$
                      Then the value of our integral is equal to
                      $$frac{4}{pi^2}int_{-infty}^infty frac{arctan(x+1)-arctan(x-1)}{1+4x^2}dxapprox 0.3743$$
                      which disproves your conjecture.






                      share|cite|improve this answer


























                        3














                        Unfortunately, your intuitive conjecture is INCORRECT.



                        Let $f(x)$ be the PDF of the random variable $X$ and $F(x)$ be its cumulative PDF, so that $F'(x)=f(x)$, or
                        $$F(x)=int_{-infty}^x f(t)dt$$
                        Similarly, let $g(x)$ be another PDF with cumulative PDF $G(x)$. Then the expected value of the integral
                        $$int_{X-r}^{X+r} g(x)dx$$
                        is equal to
                        $$int_{-infty}^infty int_{x-r}^{x+r} f(x)g(t)dtdx=int_{-infty}^infty (G(x+r)-G(x-r))f(x)dx$$
                        By using integration by parts, we have that
                        $$int_{-infty}^infty (G(x+r)-G(x-r))f(x)dx=int_{-infty}^infty (F(x+r)-F(x-r))g(x)dx$$
                        Consider this simple counterexample. Let $r=1$, and suppose that
                        $$f(x)=frac{1}{pi}frac{1}{1+x^2}$$
                        Then, if your conjecture is true, for no function $g$ will the integral
                        $$frac{1}{pi}int_{-infty}^infty (arctan(x+1)-arctan(x-1))g(x)dx$$
                        even surpass the value
                        $$frac{1}{pi^2}int_{-infty}^infty frac{arctan(x+1)-arctan(x-1)}{1+x^2}dxapprox 0.1475$$
                        However, suppose that we let
                        $$g(x)=frac{4}{pi}frac{1}{1+4x^2}$$
                        Then the value of our integral is equal to
                        $$frac{4}{pi^2}int_{-infty}^infty frac{arctan(x+1)-arctan(x-1)}{1+4x^2}dxapprox 0.3743$$
                        which disproves your conjecture.






                        share|cite|improve this answer
























                          3












                          3








                          3






                          Unfortunately, your intuitive conjecture is INCORRECT.



                          Let $f(x)$ be the PDF of the random variable $X$ and $F(x)$ be its cumulative PDF, so that $F'(x)=f(x)$, or
                          $$F(x)=int_{-infty}^x f(t)dt$$
                          Similarly, let $g(x)$ be another PDF with cumulative PDF $G(x)$. Then the expected value of the integral
                          $$int_{X-r}^{X+r} g(x)dx$$
                          is equal to
                          $$int_{-infty}^infty int_{x-r}^{x+r} f(x)g(t)dtdx=int_{-infty}^infty (G(x+r)-G(x-r))f(x)dx$$
                          By using integration by parts, we have that
                          $$int_{-infty}^infty (G(x+r)-G(x-r))f(x)dx=int_{-infty}^infty (F(x+r)-F(x-r))g(x)dx$$
                          Consider this simple counterexample. Let $r=1$, and suppose that
                          $$f(x)=frac{1}{pi}frac{1}{1+x^2}$$
                          Then, if your conjecture is true, for no function $g$ will the integral
                          $$frac{1}{pi}int_{-infty}^infty (arctan(x+1)-arctan(x-1))g(x)dx$$
                          even surpass the value
                          $$frac{1}{pi^2}int_{-infty}^infty frac{arctan(x+1)-arctan(x-1)}{1+x^2}dxapprox 0.1475$$
                          However, suppose that we let
                          $$g(x)=frac{4}{pi}frac{1}{1+4x^2}$$
                          Then the value of our integral is equal to
                          $$frac{4}{pi^2}int_{-infty}^infty frac{arctan(x+1)-arctan(x-1)}{1+4x^2}dxapprox 0.3743$$
                          which disproves your conjecture.






                          share|cite|improve this answer












                          Unfortunately, your intuitive conjecture is INCORRECT.



                          Let $f(x)$ be the PDF of the random variable $X$ and $F(x)$ be its cumulative PDF, so that $F'(x)=f(x)$, or
                          $$F(x)=int_{-infty}^x f(t)dt$$
                          Similarly, let $g(x)$ be another PDF with cumulative PDF $G(x)$. Then the expected value of the integral
                          $$int_{X-r}^{X+r} g(x)dx$$
                          is equal to
                          $$int_{-infty}^infty int_{x-r}^{x+r} f(x)g(t)dtdx=int_{-infty}^infty (G(x+r)-G(x-r))f(x)dx$$
                          By using integration by parts, we have that
                          $$int_{-infty}^infty (G(x+r)-G(x-r))f(x)dx=int_{-infty}^infty (F(x+r)-F(x-r))g(x)dx$$
                          Consider this simple counterexample. Let $r=1$, and suppose that
                          $$f(x)=frac{1}{pi}frac{1}{1+x^2}$$
                          Then, if your conjecture is true, for no function $g$ will the integral
                          $$frac{1}{pi}int_{-infty}^infty (arctan(x+1)-arctan(x-1))g(x)dx$$
                          even surpass the value
                          $$frac{1}{pi^2}int_{-infty}^infty frac{arctan(x+1)-arctan(x-1)}{1+x^2}dxapprox 0.1475$$
                          However, suppose that we let
                          $$g(x)=frac{4}{pi}frac{1}{1+4x^2}$$
                          Then the value of our integral is equal to
                          $$frac{4}{pi^2}int_{-infty}^infty frac{arctan(x+1)-arctan(x-1)}{1+4x^2}dxapprox 0.3743$$
                          which disproves your conjecture.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Nov 10 at 18:03









                          Frpzzd

                          21.5k839107




                          21.5k839107






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.





                              Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                              Please pay close attention to the following guidance:


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2992859%2fon-an-expected-value-inequality%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              這個網誌中的熱門文章

                              Xamarin.form Move up view when keyboard appear

                              Post-Redirect-Get with Spring WebFlux and Thymeleaf

                              Anylogic : not able to use stopDelay()