6-simplex










































6-simplex
Type
uniform polypeton
Schläfli symbol {35}
Coxeter diagrams
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Elements

f5 = 7, f4 = 21, C = 35, F = 35, E = 21, V = 7

(χ=0)


Coxeter group A6, [35], order 5040
Bowers name
and (acronym)
Heptapeton
(hop)
Vertex figure
5-simplex
Circumradius 0.645497
Properties
convex, isogonal self-dual

In geometry, a 6-simplex is a self-dual regular 6-polytope. It has 7 vertices, 21 edges, 35 triangle faces, 35 tetrahedral cells, 21 5-cell 4-faces, and 7 5-simplex 5-faces. Its dihedral angle is cos−1(1/6), or approximately 80.41°.




Contents






  • 1 Alternate names


  • 2 As a configuration


  • 3 Coordinates


  • 4 Images


  • 5 Related uniform 6-polytopes


  • 6 Notes


  • 7 References


  • 8 External links





Alternate names


It can also be called a heptapeton, or hepta-6-tope, as a 7-facetted polytope in 6-dimensions. The name heptapeton is derived from hepta for seven facets in Greek and -peta for having five-dimensional facets, and -on. Jonathan Bowers gives a heptapeton the acronym hop.[1]



As a configuration


This configuration matrix represents the 6-simplex. The rows and columns correspond to vertices, edges, faces, cells, 4-faces and 5-faces. The diagonal numbers say how many of each element occur in the whole 6-simplex. The nondiagonal numbers say how many of the column's element occur in or at the row's element. This self-dual simplex's matrix is identical to its 180 degree rotation.[2][3]


[76152015622151010533354644643533510105212615201567]{displaystyle {begin{bmatrix}{begin{matrix}7&6&15&20&15&6\2&21&5&10&10&5\3&3&35&4&6&4\4&6&4&35&3&3\5&10&10&5&21&2\6&15&20&15&6&7end{matrix}}end{bmatrix}}}{displaystyle {begin{bmatrix}{begin{matrix}7&6&15&20&15&6\2&21&5&10&10&5\3&3&35&4&6&4\4&6&4&35&3&3\5&10&10&5&21&2\6&15&20&15&6&7end{matrix}}end{bmatrix}}}



Coordinates


The Cartesian coordinates for an origin-centered regular heptapeton having edge length 2 are:



(1/21, 1/15, 1/10, 1/6, 1/3, ±1){displaystyle left({sqrt {1/21}}, {sqrt {1/15}}, {sqrt {1/10}}, {sqrt {1/6}}, {sqrt {1/3}}, pm 1right)}left({sqrt  {1/21}}, {sqrt  {1/15}}, {sqrt  {1/10}}, {sqrt  {1/6}}, {sqrt  {1/3}}, pm 1right)

(1/21, 1/15, 1/10, 1/6, −21/3, 0){displaystyle left({sqrt {1/21}}, {sqrt {1/15}}, {sqrt {1/10}}, {sqrt {1/6}}, -2{sqrt {1/3}}, 0right)}left({sqrt  {1/21}}, {sqrt  {1/15}}, {sqrt  {1/10}}, {sqrt  {1/6}}, -2{sqrt  {1/3}}, 0right)

(1/21, 1/15, 1/10, −3/2, 0, 0){displaystyle left({sqrt {1/21}}, {sqrt {1/15}}, {sqrt {1/10}}, -{sqrt {3/2}}, 0, 0right)}left({sqrt  {1/21}}, {sqrt  {1/15}}, {sqrt  {1/10}}, -{sqrt  {3/2}}, 0, 0right)

(1/21, 1/15, −22/5, 0, 0, 0){displaystyle left({sqrt {1/21}}, {sqrt {1/15}}, -2{sqrt {2/5}}, 0, 0, 0right)}left({sqrt  {1/21}}, {sqrt  {1/15}}, -2{sqrt  {2/5}}, 0, 0, 0right)

(1/21, −5/3, 0, 0, 0, 0){displaystyle left({sqrt {1/21}}, -{sqrt {5/3}}, 0, 0, 0, 0right)}left({sqrt  {1/21}}, -{sqrt  {5/3}}, 0, 0, 0, 0right)

(−12/7, 0, 0, 0, 0, 0){displaystyle left(-{sqrt {12/7}}, 0, 0, 0, 0, 0right)}left(-{sqrt  {12/7}}, 0, 0, 0, 0, 0right)


The vertices of the 6-simplex can be more simply positioned in 7-space as permutations of:


(0,0,0,0,0,0,1)

This construction is based on facets of the 7-orthoplex.



Images








































orthographic projections
AkCoxeter plane
A6
A5
A4
Graph

6-simplex t0.svg

6-simplex t0 A5.svg

6-simplex t0 A4.svg

Dihedral symmetry
[7]
[6]
[5]
Ak Coxeter plane
A3
A2
Graph

6-simplex t0 A3.svg

6-simplex t0 A2.svg
Dihedral symmetry
[4]
[3]


Related uniform 6-polytopes


The regular 6-simplex is one of 35 uniform 6-polytopes based on the [3,3,3,3,3] Coxeter group, all shown here in A6Coxeter plane orthographic projections.

















































Notes





  1. ^ Klitzing, (x3o3o3o3o3o - hop)


  2. ^ Coxeter, Regular Polytopes, sec 1.8 Configurations


  3. ^ Coxeter, Complex Regular Polytopes, p.117




References




  • H.S.M. Coxeter:

    • Coxeter, Regular Polytopes, (3rd edition, 1973), Dover edition, .mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}
      ISBN 0-486-61480-8, p. 296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)

    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973, p. 296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)


    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995,
      ISBN 978-0-471-01003-6 [1]

      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]

      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]

      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]






  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008,
    ISBN 978-1-56881-220-5 (Chapter 26. pp. 409: Hemicubes: 1n1)


  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. (1966)



  • Klitzing, Richard. "6D uniform polytopes (polypeta) x3o3o3o3o - hix".



External links




  • Olshevsky, George. "Simplex". Glossary for Hyperspace. Archived from the original on 4 February 2007.

  • Polytopes of Various Dimensions

  • Multi-dimensional Glossary































































































Fundamental convex regular and uniform polytopes in dimensions 2–10


Family

An

Bn

I2(p) / Dn

E6 / E7 / E8 / F4 / G2

Hn

Regular polygon

Triangle

Square

p-gon

Hexagon

Pentagon

Uniform polyhedron

Tetrahedron

Octahedron • Cube

Demicube


Dodecahedron • Icosahedron

Uniform 4-polytope

5-cell

16-cell • Tesseract

Demitesseract

24-cell

120-cell • 600-cell

Uniform 5-polytope

5-simplex

5-orthoplex • 5-cube

5-demicube



Uniform 6-polytope

6-simplex

6-orthoplex • 6-cube

6-demicube

122 • 221


Uniform 7-polytope

7-simplex

7-orthoplex • 7-cube

7-demicube

132 • 231 • 321


Uniform 8-polytope

8-simplex

8-orthoplex • 8-cube

8-demicube

142 • 241 • 421


Uniform 9-polytope

9-simplex

9-orthoplex • 9-cube

9-demicube



Uniform 10-polytope

10-simplex

10-orthoplex • 10-cube

10-demicube


Uniform n-polytope

n-simplex

n-orthoplex • n-cube

n-demicube

1k2 • 2k1 • k21

n-pentagonal polytope
Topics: Polytope families • Regular polytope • List of regular polytopes and compounds



這個網誌中的熱門文章

Tangent Lines Diagram Along Smooth Curve

Yusuf al-Mu'taman ibn Hud

Zucchini