Pentellated 6-simplexes
























6-simplex t0.svg
6-simplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

6-simplex t05.svg
Pentellated 6-simplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png

6-simplex t015.svg
Pentitruncated 6-simplex
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png

6-simplex t025.svg
Penticantellated 6-simplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png

6-simplex t0125.svg
Penticantitruncated 6-simplex
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png

6-simplex t0135.svg
Pentiruncitruncated 6-simplex
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png

6-simplex t0235.svg
Pentiruncicantellated 6-simplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png

6-simplex t01235.svg
Pentiruncicantitruncated 6-simplex
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png

6-simplex t0145.svg
Pentisteritruncated 6-simplex
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png

6-simplex t01245.svg
Pentistericantitruncated 6-simplex
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png

6-simplex t012345.svg
Pentisteriruncicantitruncated 6-simplex
(Omnitruncated 6-simplex)
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png

Orthogonal projections in A6Coxeter plane

In six-dimensional geometry, a pentellated 6-simplex is a convex uniform 6-polytope with 5th order truncations of the regular 6-simplex.


There are unique 10 degrees of pentellations of the 6-simplex with permutations of truncations, cantellations, runcinations, and sterications. The simple pentellated 6-simplex is also called an expanded 6-simplex, constructed by an expansion operation applied to the regular 6-simplex. The highest form, the pentisteriruncicantitruncated 6-simplex, is called an omnitruncated 6-simplex with all of the nodes ringed.




Contents






  • 1 Pentellated 6-simplex


    • 1.1 Alternate names


    • 1.2 Coordinates


    • 1.3 Root vectors


    • 1.4 Images




  • 2 Pentitruncated 6-simplex


    • 2.1 Alternate names


    • 2.2 Coordinates


    • 2.3 Images




  • 3 Penticantellated 6-simplex


    • 3.1 Alternate names


    • 3.2 Coordinates


    • 3.3 Images




  • 4 Penticantitruncated 6-simplex


    • 4.1 Alternate names


    • 4.2 Coordinates


    • 4.3 Images




  • 5 Pentiruncitruncated 6-simplex


    • 5.1 Alternate names


    • 5.2 Coordinates


    • 5.3 Images




  • 6 Pentiruncicantellated 6-simplex


    • 6.1 Alternate names


    • 6.2 Coordinates


    • 6.3 Images




  • 7 Pentiruncicantitruncated 6-simplex


    • 7.1 Alternate names


    • 7.2 Coordinates


    • 7.3 Images




  • 8 Pentisteritruncated 6-simplex


    • 8.1 Alternate names


    • 8.2 Coordinates


    • 8.3 Images




  • 9 Pentistericantitruncated 6-simplex


    • 9.1 Alternate names


    • 9.2 Coordinates


    • 9.3 Images




  • 10 Omnitruncated 6-simplex


    • 10.1 Alternate names


    • 10.2 Permutohedron and related tessellation


    • 10.3 Coordinates


    • 10.4 Images




  • 11 Related uniform 6-polytopes


  • 12 Notes


  • 13 References


  • 14 External links





Pentellated 6-simplex




















































Pentellated 6-simplex
Type
Uniform 6-polytope
Schläfli symbol t0,5{3,3,3,3,3}
Coxeter-Dynkin diagram
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
5-faces 126:
7+7 {34} 5-simplex t0.svg
21+21 {}×{3,3,3}
35+35 {3}×{3,3}
4-faces 434
Cells 630
Faces 490
Edges 210
Vertices 42
Vertex figure 5-cell antiprism
Coxeter group A6×2, [[3,3,3,3,3]], order 10080
Properties
convex


Alternate names



  • Expanded 6-simplex

  • Small terated tetradecapeton (Acronym: staf) (Jonathan Bowers)[1]



Coordinates


The vertices of the pentellated 6-simplex can be positioned in 7-space as permutations of (0,1,1,1,1,1,2). This construction is based on facets of the pentellated 7-orthoplex.


A second construction in 7-space, from the center of a rectified 7-orthoplex is given by coordinate permutations of:


(1,-1,0,0,0,0,0)


Root vectors


Its 42 vertices represent the root vectors of the simple Lie group A6. It is the vertex figure of the 6-simplex honeycomb.



Images








































orthographic projections
AkCoxeter plane
A6
A5
A4
Graph

6-simplex t05.svg

6-simplex t05 A5.svg

6-simplex t05 A4.svg
Symmetry
[[7]](*)=[14]
[6]
[[5]](*)=[10]
Ak Coxeter plane
A3
A2
Graph

6-simplex t05 A3.svg

6-simplex t05 A2.svg
Symmetry
[4]
[[3]](*)=[6]

Note: (*) Symmetry doubled for Ak graphs with even k due to symmetrically-ringed Coxeter-Dynkin diagram.




Pentitruncated 6-simplex




















































Pentitruncated 6-simplex
Type
uniform 6-polytope
Schläfli symbol t0,1,5{3,3,3,3,3}
Coxeter-Dynkin diagrams
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
5-faces 126
4-faces 826
Cells 1785
Faces 1820
Edges 945
Vertices 210
Vertex figure
Coxeter group A6, [3,3,3,3,3], order 5040
Properties
convex


Alternate names


  • Teracellated heptapeton (Acronym: tocal) (Jonathan Bowers)[2]


Coordinates


The vertices of the runcitruncated 6-simplex can be most simply positioned in 7-space as permutations of (0,1,1,1,1,2,3). This construction is based on facets of the runcitruncated 7-orthoplex.



Images








































orthographic projections
AkCoxeter plane
A6
A5
A4
Graph

6-simplex t015.svg

6-simplex t015 A5.svg

6-simplex t015 A4.svg

Dihedral symmetry
[7]
[6]
[5]
Ak Coxeter plane
A3
A2
Graph

6-simplex t015 A3.svg

6-simplex t015 A2.svg
Dihedral symmetry
[4]
[3]


Penticantellated 6-simplex




















































Penticantellated 6-simplex
Type
uniform 6-polytope
Schläfli symbol t0,2,5{3,3,3,3,3}
Coxeter-Dynkin diagrams
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
5-faces 126
4-faces 1246
Cells 3570
Faces 4340
Edges 2310
Vertices 420
Vertex figure
Coxeter group A6, [3,3,3,3,3], order 5040
Properties
convex


Alternate names


  • Teriprismated heptapeton (Acronym: topal) (Jonathan Bowers)[3]


Coordinates


The vertices of the runcicantellated 6-simplex can be most simply positioned in 7-space as permutations of (0,1,1,1,1,2,3). This construction is based on facets of the penticantellated 7-orthoplex.



Images








































orthographic projections
AkCoxeter plane
A6
A5
A4
Graph

6-simplex t025.svg

6-simplex t025 A5.svg

6-simplex t025 A4.svg

Dihedral symmetry
[7]
[6]
[5]
Ak Coxeter plane
A3
A2
Graph

6-simplex t025 A3.svg

6-simplex t025 A2.svg
Dihedral symmetry
[4]
[3]


Penticantitruncated 6-simplex




















































penticantitruncated 6-simplex
Type
uniform 6-polytope
Schläfli symbol t0,1,2,5{3,3,3,3,3}
Coxeter-Dynkin diagrams
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
5-faces 126
4-faces 1351
Cells 4095
Faces 5390
Edges 3360
Vertices 840
Vertex figure
Coxeter group A6, [3,3,3,3,3], order 5040
Properties
convex


Alternate names


  • Terigreatorhombated heptapeton (Acronym: togral) (Jonathan Bowers)[4]


Coordinates


The vertices of the penticantitruncated 6-simplex can be most simply positioned in 7-space as permutations of (0,1,1,1,2,3,4). This construction is based on facets of the penticantitruncated 7-orthoplex.



Images








































orthographic projections
AkCoxeter plane
A6
A5
A4
Graph

6-simplex t0125.svg

6-simplex t0125 A5.svg

6-simplex t0125 A4.svg

Dihedral symmetry
[7]
[6]
[5]
Ak Coxeter plane
A3
A2
Graph

6-simplex t0125 A3.svg

6-simplex t0125 A2.svg
Dihedral symmetry
[4]
[3]


Pentiruncitruncated 6-simplex




















































pentiruncitruncated 6-simplex
Type
uniform 6-polytope
Schläfli symbol t0,1,3,5{3,3,3,3,3}
Coxeter-Dynkin diagrams
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
5-faces 126
4-faces 1491
Cells 5565
Faces 8610
Edges 5670
Vertices 1260
Vertex figure
Coxeter group A6, [3,3,3,3,3], order 5040
Properties
convex


Alternate names


  • Tericellirhombated heptapeton (Acronym: tocral) (Jonathan Bowers)[5]


Coordinates


The vertices of the pentiruncitruncated 6-simplex can be most simply positioned in 7-space as permutations of (0,1,1,1,2,3,4). This construction is based on facets of the pentiruncitruncated 7-orthoplex.



Images








































orthographic projections
AkCoxeter plane
A6
A5
A4
Graph

6-simplex t0135.svg

6-simplex t0135 A5.svg

6-simplex t0135 A4.svg

Dihedral symmetry
[7]
[6]
[5]
Ak Coxeter plane
A3
A2
Graph

6-simplex t0135 A3.svg

6-simplex t0135 A2.svg
Dihedral symmetry
[4]
[3]


Pentiruncicantellated 6-simplex




















































Pentiruncicantellated 6-simplex
Type
uniform 6-polytope
Schläfli symbol t0,2,3,5{3,3,3,3,3}
Coxeter-Dynkin diagrams
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
5-faces 126
4-faces 1596
Cells 5250
Faces 7560
Edges 5040
Vertices 1260
Vertex figure
Coxeter group A6, [[3,3,3,3,3]], order 10080
Properties
convex


Alternate names


  • Teriprismatorhombated tetradecapeton (Acronym: taporf) (Jonathan Bowers)[6]


Coordinates


The vertices of the pentiruncicantellated 6-simplex can be most simply positioned in 7-space as permutations of (0,1,1,2,3,3,4). This construction is based on facets of the pentiruncicantellated 7-orthoplex.



Images








































orthographic projections
AkCoxeter plane
A6
A5
A4
Graph

6-simplex t0235.svg

6-simplex t0235 A5.svg

6-simplex t0235 A4.svg
Symmetry
[[7]](*)=[14]
[6]
[[5]](*)=[10]
Ak Coxeter plane
A3
A2
Graph

6-simplex t0235 A3.svg

6-simplex t0235 A2.svg
Symmetry
[4]
[[3]](*)=[6]

Note: (*) Symmetry doubled for Ak graphs with even k due to symmetrically-ringed Coxeter-Dynkin diagram.




Pentiruncicantitruncated 6-simplex




















































Pentiruncicantitruncated 6-simplex
Type
uniform 6-polytope
Schläfli symbol t0,1,2,3,5{3,3,3,3,3}
Coxeter-Dynkin diagrams
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
5-faces 126
4-faces 1701
Cells 6825
Faces 11550
Edges 8820
Vertices 2520
Vertex figure
Coxeter group A6, [3,3,3,3,3], order 5040
Properties
convex


Alternate names


  • Terigreatoprismated heptapeton (Acronym: tagopal) (Jonathan Bowers)[7]


Coordinates


The vertices of the pentiruncicantitruncated 6-simplex can be most simply positioned in 7-space as permutations of (0,1,1,2,3,4,5). This construction is based on facets of the pentiruncicantitruncated 7-orthoplex.



Images








































orthographic projections
AkCoxeter plane
A6
A5
A4
Graph

6-simplex t01235.svg

6-simplex t01235 A5.svg

6-simplex t01235 A4.svg

Dihedral symmetry
[7]
[6]
[5]
Ak Coxeter plane
A3
A2
Graph

6-simplex t01235 A3.svg

6-simplex t01235 A2.svg
Dihedral symmetry
[4]
[3]


Pentisteritruncated 6-simplex




















































Pentisteritruncated 6-simplex
Type
uniform 6-polytope
Schläfli symbol t0,1,4,5{3,3,3,3,3}
Coxeter-Dynkin diagrams
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
5-faces 126
4-faces 1176
Cells 3780
Faces 5250
Edges 3360
Vertices 840
Vertex figure
Coxeter group A6, [[3,3,3,3,3]], order 10080
Properties
convex


Alternate names


  • Tericellitruncated tetradecapeton (Acronym: tactaf) (Jonathan Bowers)[8]


Coordinates


The vertices of the pentisteritruncated 6-simplex can be most simply positioned in 7-space as permutations of (0,1,2,2,2,3,4). This construction is based on facets of the pentisteritruncated 7-orthoplex.



Images








































orthographic projections
AkCoxeter plane
A6
A5
A4
Graph

6-simplex t0145.svg

6-simplex t0145 A5.svg

6-simplex t0145 A4.svg
Symmetry
[[7]](*)=[14]
[6]
[[5]](*)=[10]
Ak Coxeter plane
A3
A2
Graph

6-simplex t0145 A3.svg

6-simplex t0145 A2.svg
Symmetry
[4]
[[3]](*)=[6]

Note: (*) Symmetry doubled for Ak graphs with even k due to symmetrically-ringed Coxeter-Dynkin diagram.




Pentistericantitruncated 6-simplex




















































pentistericantitruncated 6-simplex
Type
uniform 6-polytope
Schläfli symbol t0,1,2,4,5{3,3,3,3,3}
Coxeter-Dynkin diagrams
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
5-faces 126
4-faces 1596
Cells 6510
Faces 11340
Edges 8820
Vertices 2520
Vertex figure
Coxeter group A6, [3,3,3,3,3], order 5040
Properties
convex


Alternate names


  • Great teracellirhombated heptapeton (Acronym: gatocral) (Jonathan Bowers)[9]


Coordinates


The vertices of the pentistericantittruncated 6-simplex can be most simply positioned in 7-space as permutations of (0,1,2,2,3,4,5). This construction is based on facets of the pentistericantitruncated 7-orthoplex.



Images








































orthographic projections
AkCoxeter plane
A6
A5
A4
Graph

6-simplex t01245.svg

6-simplex t01245 A5.svg

6-simplex t01245 A4.svg

Dihedral symmetry
[7]
[6]
[5]
Ak Coxeter plane
A3
A2
Graph

6-simplex t01245 A3.svg

6-simplex t01245 A2.svg
Dihedral symmetry
[4]
[3]


Omnitruncated 6-simplex




















































Omnitruncated 6-simplex
Type

Uniform 6-polytope
Schläfli symbol t0,1,2,3,4,5{35}
Coxeter-Dynkin diagrams
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
5-faces 126:
14 t0,1,2,3,4{34}5-simplex t01234.svg
42 {}×t0,1,2,3{33} Complete graph K2.svg×6-simplex t0123.svg
70 {6}×t0,1,2,3{3,3} 2-simplex t01.svg×3-simplex t012.svg
4-faces 1806
Cells 8400
Faces 16800:
4200 {6} 2-simplex t01.svg
1260 {4}Kvadrato.svg
Edges 15120
Vertices 5040
Vertex figure
Omnitruncated 6-simplex verf.png
irregular 5-simplex
Coxeter group A6, [[35]], order 10080
Properties
convex, isogonal, zonotope

The omnitruncated 6-simplex has 5040 vertices, 15120 edges,16800 faces (4200 hexagons and 1260 squares), 8400 cells, 1806 4-faces, and 126 5-faces. With 5040 vertices, it is the largest of 35 uniform 6-polytopes generated from the regular 6-simplex.



Alternate names



  • Pentisteriruncicantitruncated 6-simplex (Johnson's omnitruncation for 6-polytopes)

  • Omnitruncated heptapeton

  • Great terated tetradecapeton (Acronym: gotaf) (Jonathan Bowers)[10]



Permutohedron and related tessellation


The omnitruncated 6-simplex is the permutohedron of order 7. The omnitruncated 6-simplex is a zonotope, the Minkowski sum of seven line segments parallel to the seven lines through the origin and the seven vertices of the 6-simplex.


Like all uniform omnitruncated n-simplices, the omnitruncated 6-simplex can tessellate space by itself, in this case 6-dimensional space with three facets around each hypercell. It has Coxeter-Dynkin diagram of CDel branch 11.pngCDel 3ab.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.pngCDel split2.pngCDel node 1.png.



Coordinates


The vertices of the omnitruncated 6-simplex can be most simply positioned in 7-space as permutations of (0,1,2,3,4,5,6). This construction is based on facets of the pentisteriruncicantitruncated 7-orthoplex, t0,1,2,3,4,5{35,4}, CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png.



Images








































orthographic projections
AkCoxeter plane
A6
A5
A4
Graph

6-simplex t012345.svg

6-simplex t012345 A5.svg

6-simplex t012345 A4.svg
Symmetry
[[7]](*)=[14]
[6]
[[5]](*)=[10]
Ak Coxeter plane
A3
A2
Graph

6-simplex t012345 A3.svg

6-simplex t012345 A2.svg
Symmetry
[4]
[[3]](*)=[6]

Note: (*) Symmetry doubled for Ak graphs with even k due to symmetrically-ringed Coxeter-Dynkin diagram.




Related uniform 6-polytopes


The pentellated 6-simplex is one of 35 uniform 6-polytopes based on the [3,3,3,3,3] Coxeter group, all shown here in A6Coxeter plane orthographic projections.

















































Notes





  1. ^ Klitzing, (x3o3o3o3o3x - staf)


  2. ^ Klitzing, (x3x3o3o3o3x - tocal)


  3. ^ Klitzing, (x3o3x3o3o3x - topal)


  4. ^ Klitzing, (x3x3x3o3o3x - togral)


  5. ^ Klitzing, (x3x3o3x3o3x - tocral)


  6. ^ Klitzing, (x3o3x3x3o3x - taporf)


  7. ^ Klitzing, (x3x3x3o3x3x - tagopal)


  8. ^ Klitzing, (x3x3o3o3x3x - tactaf)


  9. ^ Klitzing, (x3x3x3o3x3x - gatocral)


  10. ^ Klitzing, (x3x3x3x3x3x - gotaf)




References




  • H.S.M. Coxeter:

    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973


    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, .mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}
      ISBN 978-0-471-01003-6 [1]

      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]

      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]

      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]






  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.



  • Klitzing, Richard. "6D uniform polytopes (polypeta)". x3o3o3o3o3x - staf, x3x3o3o3o3x - tocal, x3o3x3o3o3x - topal, x3x3x3o3o3x - togral, x3x3o3x3o3x - tocral, x3x3x3x3o3x - tagopal, x3x3o3o3x3x - tactaf, x3x3x3o3x3x - tacogral, x3x3x3x3x3x - gotaf



External links




  • Glossary for hyperspace, George Olshevsky.

  • Polytopes of Various Dimensions

  • Multi-dimensional Glossary































































































Fundamental convex regular and uniform polytopes in dimensions 2–10


Family

An

Bn

I2(p) / Dn

E6 / E7 / E8 / F4 / G2

Hn

Regular polygon

Triangle

Square

p-gon

Hexagon

Pentagon

Uniform polyhedron

Tetrahedron

Octahedron • Cube

Demicube


Dodecahedron • Icosahedron

Uniform 4-polytope

5-cell

16-cell • Tesseract

Demitesseract

24-cell

120-cell • 600-cell

Uniform 5-polytope

5-simplex

5-orthoplex • 5-cube

5-demicube



Uniform 6-polytope

6-simplex

6-orthoplex • 6-cube

6-demicube

122 • 221


Uniform 7-polytope

7-simplex

7-orthoplex • 7-cube

7-demicube

132 • 231 • 321


Uniform 8-polytope

8-simplex

8-orthoplex • 8-cube

8-demicube

142 • 241 • 421


Uniform 9-polytope

9-simplex

9-orthoplex • 9-cube

9-demicube



Uniform 10-polytope

10-simplex

10-orthoplex • 10-cube

10-demicube


Uniform n-polytope

n-simplex

n-orthoplex • n-cube

n-demicube

1k2 • 2k1 • k21

n-pentagonal polytope
Topics: Polytope families • Regular polytope • List of regular polytopes and compounds



這個網誌中的熱門文章

Xamarin.form Move up view when keyboard appear

Post-Redirect-Get with Spring WebFlux and Thymeleaf

Anylogic : not able to use stopDelay()