Simplectic honeycomb






















A~2{displaystyle {tilde {A}}_{2}}{tilde {A}}_{2}

A~3{displaystyle {tilde {A}}_{3}}{tilde {A}}_{3}

Triangular tiling

Tetrahedral-octahedral honeycomb

Uniform tiling 333-t1.png
With red and yellow equilateral triangles

Tetrahedral-octahedral honeycomb2.png
With cyan and yellow tetrahedra, and red rectified tetrahedra (octahedra)

CDel node 1.pngCDel split1.pngCDel branch.png

CDel node 1.pngCDel split1.pngCDel nodes.pngCDel split2.pngCDel node.png

In geometry, the simplectic honeycomb (or n-simplex honeycomb) is a dimensional infinite series of honeycombs, based on the A~n{displaystyle {tilde {A}}_{n}}{tilde {A}}_{n} affine Coxeter group symmetry. It is given a Schläfli symbol {3[n+1]}, and is represented by a Coxeter-Dynkin diagram as a cyclic graph of n+1 nodes with one node ringed. It is composed of n-simplex facets, along with all rectified n-simplices. It can be thought of as an n-dimensional hypercubic honeycomb that has been subdivided along all hyperplanes x+y+...∈Z{displaystyle x+y+...in mathbb {Z} }{displaystyle x+y+...in mathbb {Z} }, then stretched along its main diagonal until the simplices on the ends of the hypercubes become regular. The vertex figure of an n-simplex honeycomb is an expanded n-simplex.


In 2 dimensions, the honeycomb represents the triangular tiling, with Coxeter graph CDel node 1.pngCDel split1.pngCDel branch.png filling the plane with alternately colored triangles. In 3 dimensions it represents the tetrahedral-octahedral honeycomb, with Coxeter graph CDel node 1.pngCDel split1.pngCDel nodes.pngCDel split2.pngCDel node.png filling space with alternately tetrahedral and octahedral cells. In 4 dimensions it is called the 5-cell honeycomb, with Coxeter graph CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel branch.png, with 5-cell and rectified 5-cell facets. In 5 dimensions it is called the 5-simplex honeycomb, with Coxeter graph CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png, filling space by 5-simplex, rectified 5-simplex, and birectified 5-simplex facets. In 6 dimensions it is called the 6-simplex honeycomb, with Coxeter graph CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch.png, filling space by 6-simplex, rectified 6-simplex, and birectified 6-simplex facets.




Contents






  • 1 By dimension


  • 2 Projection by folding


  • 3 Kissing number


  • 4 See also


  • 5 References





By dimension















































































































n

A~2+{displaystyle {tilde {A}}_{2+}}{{tilde  {A}}}_{{2+}}
Tessellation
Vertex figure
Facets per vertex figure
Vertices per vertex figure
Edge figure
1

A~1{displaystyle {tilde {A}}_{1}}{tilde {A}}_{1}

Regular apeirogon.png
Apeirogon
CDel node 1.pngCDel infin.pngCDel node.png

CDel node 1.png
1
2
-

2

A~2{displaystyle {tilde {A}}_{2}}{tilde {A}}_{2}

Uniform tiling 333-t1.png
Triangular tiling
2-simplex honeycomb
CDel node 1.pngCDel split1.pngCDel branch.png

Truncated triangle.png
Hexagon
(Truncated triangle)
CDel node 1.pngCDel 3.pngCDel node 1.png
3+3 triangles
6

Line segment
CDel node 1.png

3

A~3{displaystyle {tilde {A}}_{3}}{tilde {A}}_{3}

Tetrahedral-octahedral honeycomb2.png
Tetrahedral-octahedral honeycomb
3-simplex honeycomb
CDel node 1.pngCDel split1.pngCDel nodes.pngCDel split2.pngCDel node.png

Uniform t0 3333 honeycomb verf2.png
Cuboctahedron
(Cantellated tetrahedron)
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
4+4 tetrahedron
6 rectified tetrahedra
12

Cuboctahedron vertfig.png
Rectangle
CDel node 1.pngCDel 2.pngCDel node 1.png

4

A~4{displaystyle {tilde {A}}_{4}}{{tilde  {A}}}_{4}

4-simplex honeycomb
CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel branch.png

4-simplex honeycomb verf.png
Runcinated 5-cell
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
5+5 5-cells
10+10 rectified 5-cells
20

Runcinated 5-cell verf.png
Triangular antiprism
CDel node h.pngCDel 3.pngCDel node h.pngCDel 2x.pngCDel node h.png

5

A~5{displaystyle {tilde {A}}_{5}}{tilde {A}}_{5}

5-simplex honeycomb
CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png

5-simplex t04 A4.svg
Stericated 5-simplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
6+6 5-simplex
15+15 rectified 5-simplex
20 birectified 5-simplex
30

Stericated hexateron verf.png
Tetrahedral antiprism
CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h.pngCDel 2x.pngCDel node h.png

6

A~6{displaystyle {tilde {A}}_{6}}{tilde {A}}_{6}

6-simplex honeycomb
CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch.png

6-simplex t05.svg
Pentellated 6-simplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
7+7 6-simplex
21+21 rectified 6-simplex
35+35 birectified 6-simplex
42
4-simplex antiprism

7

A~7{displaystyle {tilde {A}}_{7}}{tilde {A}}_{7}

7-simplex honeycomb
CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png

7-simplex t06 A6.svg
Hexicated 7-simplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
8+8 7-simplex
28+28 rectified 7-simplex
56+56 birectified 7-simplex
70 trirectified 7-simplex
56
5-simplex antiprism

8

A~8{displaystyle {tilde {A}}_{8}}{{tilde  {A}}}_{8}

8-simplex honeycomb
CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch.png

8-simplex t07.svg
Heptellated 8-simplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
9+9 8-simplex
36+36 rectified 8-simplex
84+84 birectified 8-simplex
126+126 trirectified 8-simplex
72
6-simplex antiprism
9

A~9{displaystyle {tilde {A}}_{9}}{{tilde  {A}}}_{9}

9-simplex honeycomb
CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png

9-simplex t08.svg
Octellated 9-simplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
10+10 9-simplex
45+45 rectified 9-simplex
120+120 birectified 9-simplex
210+210 trirectified 9-simplex
252 quadrirectified 9-simplex
90
7-simplex antiprism
10

A~10{displaystyle {tilde {A}}_{10}}{{tilde  {A}}}_{{10}}

10-simplex honeycomb
CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch.png

10-simplex t09.svg
Ennecated 10-simplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
11+11 10-simplex
55+55 rectified 10-simplex
165+165 birectified 10-simplex
330+330 trirectified 10-simplex
462+462 quadrirectified 10-simplex
110
8-simplex antiprism
11

A~11{displaystyle {tilde {A}}_{11}}{{tilde  {A}}}_{{11}}
11-simplex honeycomb
...
...
...
...


Projection by folding


The (2n-1)-simplex honeycombs and 2n-simplex honeycombs can be projected into the n-dimensional hypercubic honeycomb by a geometric folding operation that maps two pairs of mirrors into each other, sharing the same vertex arrangement:











































A~2{displaystyle {tilde {A}}_{2}}{tilde {A}}_{2}

CDel node 1.pngCDel split1.pngCDel branch.png

A~4{displaystyle {tilde {A}}_{4}}{{tilde  {A}}}_{4}

CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel branch.png

A~6{displaystyle {tilde {A}}_{6}}{tilde {A}}_{6}

CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch.png

A~8{displaystyle {tilde {A}}_{8}}{{tilde  {A}}}_{8}

CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch.png

A~10{displaystyle {tilde {A}}_{10}}{{tilde  {A}}}_{{10}}

CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch.png
...

A~3{displaystyle {tilde {A}}_{3}}{tilde {A}}_{3}

CDel nodes 10r.pngCDel splitcross.pngCDel nodes.png

A~3{displaystyle {tilde {A}}_{3}}{tilde {A}}_{3}

CDel node 1.pngCDel split1.pngCDel nodes.pngCDel split2.pngCDel node.png

A~5{displaystyle {tilde {A}}_{5}}{tilde {A}}_{5}

CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png

A~7{displaystyle {tilde {A}}_{7}}{tilde {A}}_{7}

CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png

A~9{displaystyle {tilde {A}}_{9}}{{tilde  {A}}}_{9}

CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png
...

C~1{displaystyle {tilde {C}}_{1}}{tilde {C}}_{1}

CDel node 1.pngCDel infin.pngCDel node.png

C~2{displaystyle {tilde {C}}_{2}}{tilde {C}}_{2}

CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png

C~3{displaystyle {tilde {C}}_{3}}{tilde {C}}_{3}

CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png

C~4{displaystyle {tilde {C}}_{4}}{{tilde  {C}}}_{4}

CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png

C~5{displaystyle {tilde {C}}_{5}}{{tilde  {C}}}_{5}

CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
...


Kissing number


These honeycombs, seen as tangent n-spheres located at the center of each honeycomb vertex have a fixed number of contacting spheres and correspond to the number of vertices in the vertex figure. For 2 and 3 dimensions, this represents the highest kissing number for 2 and 3 dimensions, but fall short on higher dimensions. In 2-dimensions, the triangular tiling defines a circle packing of 6 tangent spheres arranged in a regular hexagon, and for 3 dimensions there are 12 tangent spheres arranged in a cuboctahedral configuration. For 4 to 8 dimensions, the kissing numbers are 20, 30, 42, 56, and 72 spheres, while the greatest solutions are 24, 40, 72, 126, and 240 spheres respectively.



See also



  • Hypercubic honeycomb

  • Alternated hypercubic honeycomb

  • Quarter hypercubic honeycomb

  • Truncated simplectic honeycomb

  • Omnitruncated simplectic honeycomb



References



  • George Olshevsky, Uniform Panoploid Tetracombs, Manuscript (2006) (Complete list of 11 convex uniform tilings, 28 convex uniform honeycombs, and 143 convex uniform tetracombs)


  • Branko Grünbaum, Uniform tilings of 3-space. Geombinatorics 4(1994), 49 - 56.


  • Norman Johnson Uniform Polytopes, Manuscript (1991)


  • Coxeter, H.S.M. Regular Polytopes, (3rd edition, 1973), Dover edition, .mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}
    ISBN 0-486-61480-8


  • Kaleidoscopes: Selected Writings of H. S. M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995,
    ISBN 978-0-471-01003-6 [1]

    • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10] (1.9 Uniform space-fillings)

    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]


































































































Fundamental convex regular and uniform honeycombs in dimensions 2-9

Space

Family

A~n−1{displaystyle {tilde {A}}_{n-1}}{tilde {A}}_{n-1}

C~n−1{displaystyle {tilde {C}}_{n-1}}{tilde {C}}_{n-1}

B~n−1{displaystyle {tilde {B}}_{n-1}}{tilde {B}}_{n-1}

D~n−1{displaystyle {tilde {D}}_{n-1}}{tilde {D}}_{n-1}

G~2{displaystyle {tilde {G}}_{2}}{tilde {G}}_{2} / F~4{displaystyle {tilde {F}}_{4}}{tilde {F}}_{4} / E~n−1{displaystyle {tilde {E}}_{n-1}}{tilde {E}}_{n-1}
E2

Uniform tiling

{3[3]}

δ3

3

3

Hexagonal
E3

Uniform convex honeycomb

{3[4]}

δ4

4

4

E4

Uniform 4-honeycomb

{3[5]}

δ5

5

5

24-cell honeycomb
E5

Uniform 5-honeycomb

{3[6]}

δ6

6

6

E6

Uniform 6-honeycomb

{3[7]}

δ7

7

7

222
E7

Uniform 7-honeycomb

{3[8]}

δ8

8

8

133 • 331
E8

Uniform 8-honeycomb

{3[9]}

δ9

9

9

152 • 251 • 521
E9

Uniform 9-honeycomb
{3[10]}

δ10

10

10

En-1
Uniform (n-1)-honeycomb

{3[n]}

δn

n

n

1k2 • 2k1 • k21



這個網誌中的熱門文章

Xamarin.form Move up view when keyboard appear

Post-Redirect-Get with Spring WebFlux and Thymeleaf

Anylogic : not able to use stopDelay()