Simplectic honeycomb

Multi tool use
A~2{displaystyle {tilde {A}}_{2}} |
A~3{displaystyle {tilde {A}}_{3}} |
---|---|
Triangular tiling |
Tetrahedral-octahedral honeycomb |
![]() With red and yellow equilateral triangles |
![]() With cyan and yellow tetrahedra, and red rectified tetrahedra (octahedra) |
![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
In geometry, the simplectic honeycomb (or n-simplex honeycomb) is a dimensional infinite series of honeycombs, based on the A~n{displaystyle {tilde {A}}_{n}} affine Coxeter group symmetry. It is given a Schläfli symbol {3[n+1]}, and is represented by a Coxeter-Dynkin diagram as a cyclic graph of n+1 nodes with one node ringed. It is composed of n-simplex facets, along with all rectified n-simplices. It can be thought of as an n-dimensional hypercubic honeycomb that has been subdivided along all hyperplanes x+y+...∈Z{displaystyle x+y+...in mathbb {Z} }
, then stretched along its main diagonal until the simplices on the ends of the hypercubes become regular. The vertex figure of an n-simplex honeycomb is an expanded n-simplex.
In 2 dimensions, the honeycomb represents the triangular tiling, with Coxeter graph filling the plane with alternately colored triangles. In 3 dimensions it represents the tetrahedral-octahedral honeycomb, with Coxeter graph
filling space with alternately tetrahedral and octahedral cells. In 4 dimensions it is called the 5-cell honeycomb, with Coxeter graph
, with 5-cell and rectified 5-cell facets. In 5 dimensions it is called the 5-simplex honeycomb, with Coxeter graph
, filling space by 5-simplex, rectified 5-simplex, and birectified 5-simplex facets. In 6 dimensions it is called the 6-simplex honeycomb, with Coxeter graph
, filling space by 6-simplex, rectified 6-simplex, and birectified 6-simplex facets.
Contents
1 By dimension
2 Projection by folding
3 Kissing number
4 See also
5 References
By dimension
n |
A~2+{displaystyle {tilde {A}}_{2+}} |
Tessellation |
Vertex figure |
Facets per vertex figure |
Vertices per vertex figure |
Edge figure |
---|---|---|---|---|---|---|
1 |
A~1{displaystyle {tilde {A}}_{1}} |
![]() Apeirogon ![]() ![]() ![]() |
![]() |
1 |
2 |
- |
2 |
A~2{displaystyle {tilde {A}}_{2}} |
![]() Triangular tiling 2-simplex honeycomb ![]() ![]() ![]() |
![]() Hexagon (Truncated triangle) ![]() ![]() ![]() |
3+3 triangles |
6 |
Line segment ![]() |
3 |
A~3{displaystyle {tilde {A}}_{3}} |
![]() Tetrahedral-octahedral honeycomb 3-simplex honeycomb ![]() ![]() ![]() ![]() ![]() |
![]() Cuboctahedron (Cantellated tetrahedron) ![]() ![]() ![]() ![]() ![]() |
4+4 tetrahedron 6 rectified tetrahedra |
12 |
![]() Rectangle ![]() ![]() ![]() |
4 |
A~4{displaystyle {tilde {A}}_{4}} |
4-simplex honeycomb ![]() ![]() ![]() ![]() ![]() |
![]() Runcinated 5-cell ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5+5 5-cells 10+10 rectified 5-cells |
20 |
![]() Triangular antiprism ![]() ![]() ![]() ![]() ![]() |
5 |
A~5{displaystyle {tilde {A}}_{5}} |
5-simplex honeycomb ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() Stericated 5-simplex ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6+6 5-simplex 15+15 rectified 5-simplex 20 birectified 5-simplex |
30 |
![]() Tetrahedral antiprism ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 |
A~6{displaystyle {tilde {A}}_{6}} |
6-simplex honeycomb ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() Pentellated 6-simplex ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7+7 6-simplex 21+21 rectified 6-simplex 35+35 birectified 6-simplex |
42 |
4-simplex antiprism |
7 |
A~7{displaystyle {tilde {A}}_{7}} |
7-simplex honeycomb ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() Hexicated 7-simplex ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8+8 7-simplex 28+28 rectified 7-simplex 56+56 birectified 7-simplex 70 trirectified 7-simplex |
56 |
5-simplex antiprism |
8 |
A~8{displaystyle {tilde {A}}_{8}} |
8-simplex honeycomb ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() Heptellated 8-simplex ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9+9 8-simplex 36+36 rectified 8-simplex 84+84 birectified 8-simplex 126+126 trirectified 8-simplex |
72 |
6-simplex antiprism |
9 |
A~9{displaystyle {tilde {A}}_{9}} |
9-simplex honeycomb ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() Octellated 9-simplex ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10+10 9-simplex 45+45 rectified 9-simplex 120+120 birectified 9-simplex 210+210 trirectified 9-simplex 252 quadrirectified 9-simplex |
90 |
7-simplex antiprism |
10 |
A~10{displaystyle {tilde {A}}_{10}} |
10-simplex honeycomb ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() Ennecated 10-simplex ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11+11 10-simplex 55+55 rectified 10-simplex 165+165 birectified 10-simplex 330+330 trirectified 10-simplex 462+462 quadrirectified 10-simplex |
110 |
8-simplex antiprism |
11 |
A~11{displaystyle {tilde {A}}_{11}} |
11-simplex honeycomb |
... |
... |
... |
... |
Projection by folding
The (2n-1)-simplex honeycombs and 2n-simplex honeycombs can be projected into the n-dimensional hypercubic honeycomb by a geometric folding operation that maps two pairs of mirrors into each other, sharing the same vertex arrangement:
A~2{displaystyle {tilde {A}}_{2}} |
![]() ![]() ![]() |
A~4{displaystyle {tilde {A}}_{4}} |
![]() ![]() ![]() ![]() ![]() |
A~6{displaystyle {tilde {A}}_{6}} |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
A~8{displaystyle {tilde {A}}_{8}} |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
A~10{displaystyle {tilde {A}}_{10}} |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
... |
---|---|---|---|---|---|---|---|---|---|---|
A~3{displaystyle {tilde {A}}_{3}} |
![]() ![]() ![]() |
A~3{displaystyle {tilde {A}}_{3}} |
![]() ![]() ![]() ![]() ![]() |
A~5{displaystyle {tilde {A}}_{5}} |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
A~7{displaystyle {tilde {A}}_{7}} |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
A~9{displaystyle {tilde {A}}_{9}} |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
... |
C~1{displaystyle {tilde {C}}_{1}} |
![]() ![]() ![]() |
C~2{displaystyle {tilde {C}}_{2}} |
![]() ![]() ![]() ![]() ![]() |
C~3{displaystyle {tilde {C}}_{3}} |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
C~4{displaystyle {tilde {C}}_{4}} |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
C~5{displaystyle {tilde {C}}_{5}} |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
... |
Kissing number
These honeycombs, seen as tangent n-spheres located at the center of each honeycomb vertex have a fixed number of contacting spheres and correspond to the number of vertices in the vertex figure. For 2 and 3 dimensions, this represents the highest kissing number for 2 and 3 dimensions, but fall short on higher dimensions. In 2-dimensions, the triangular tiling defines a circle packing of 6 tangent spheres arranged in a regular hexagon, and for 3 dimensions there are 12 tangent spheres arranged in a cuboctahedral configuration. For 4 to 8 dimensions, the kissing numbers are 20, 30, 42, 56, and 72 spheres, while the greatest solutions are 24, 40, 72, 126, and 240 spheres respectively.
See also
- Hypercubic honeycomb
- Alternated hypercubic honeycomb
- Quarter hypercubic honeycomb
- Truncated simplectic honeycomb
- Omnitruncated simplectic honeycomb
References
- George Olshevsky, Uniform Panoploid Tetracombs, Manuscript (2006) (Complete list of 11 convex uniform tilings, 28 convex uniform honeycombs, and 143 convex uniform tetracombs)
Branko Grünbaum, Uniform tilings of 3-space. Geombinatorics 4(1994), 49 - 56.
Norman Johnson Uniform Polytopes, Manuscript (1991)
Coxeter, H.S.M. Regular Polytopes, (3rd edition, 1973), Dover edition, .mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}
ISBN 0-486-61480-8
Kaleidoscopes: Selected Writings of H. S. M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995,
ISBN 978-0-471-01003-6 [1]
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10] (1.9 Uniform space-fillings)
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
Fundamental convex regular and uniform honeycombs in dimensions 2-9 | ||||||
---|---|---|---|---|---|---|
Space |
Family |
A~n−1{displaystyle {tilde {A}}_{n-1}} |
C~n−1{displaystyle {tilde {C}}_{n-1}} |
B~n−1{displaystyle {tilde {B}}_{n-1}} |
D~n−1{displaystyle {tilde {D}}_{n-1}} |
G~2{displaystyle {tilde {G}}_{2}} |
E2 |
Uniform tiling |
{3[3]} |
δ3 |
hδ3 |
qδ3 |
Hexagonal |
E3 |
Uniform convex honeycomb |
{3[4]} |
δ4 |
hδ4 |
qδ4 |
|
E4 |
Uniform 4-honeycomb |
{3[5]} |
δ5 |
hδ5 |
qδ5 |
24-cell honeycomb |
E5 |
Uniform 5-honeycomb |
{3[6]} |
δ6 |
hδ6 |
qδ6 |
|
E6 |
Uniform 6-honeycomb |
{3[7]} |
δ7 |
hδ7 |
qδ7 |
222 |
E7 |
Uniform 7-honeycomb |
{3[8]} |
δ8 |
hδ8 |
qδ8 |
133 • 331 |
E8 |
Uniform 8-honeycomb |
{3[9]} |
δ9 |
hδ9 |
qδ9 |
152 • 251 • 521 |
E9 |
Uniform 9-honeycomb |
{3[10]} |
δ10 |
hδ10 |
qδ10 |
|
En-1 |
Uniform (n-1)-honeycomb |
{3[n]} |
δn |
hδn |
qδn |
1k2 • 2k1 • k21 |
P6z7emsnqE