Catalan's triangle




In combinatorial mathematics, Catalan's triangle is a number triangle whose entries C(n,k){displaystyle C(n,k)}C(n,k) give the number of strings consisting of n X's and k Y's such that no initial segment of the string has more Y's than X's. It is a generalization of the Catalan numbers, and is named after Eugène Charles Catalan. Bailey[1] shows that C(n,k){displaystyle C(n,k)}C(n,k) satisfy the following properties:




  1. C(n,0)=1 for n≥0{displaystyle C(n,0)=1{text{ for }}ngeq 0}{displaystyle C(n,0)=1{text{ for }}ngeq 0}.


  2. C(n,1)=n for n≥1{displaystyle C(n,1)=n{text{ for }}ngeq 1}{displaystyle C(n,1)=n{text{ for }}ngeq 1}.

  3. C(n+1,k)=C(n+1,k−1)+C(n,k) for 1<k<n+1{displaystyle C(n+1,k)=C(n+1,k-1)+C(n,k){text{ for }}1<k<n+1}{displaystyle C(n+1,k)=C(n+1,k-1)+C(n,k){text{ for }}1<k<n+1}


  4. C(n+1,n+1)=C(n+1,n) for n≥1{displaystyle C(n+1,n+1)=C(n+1,n){text{ for }}ngeq 1}{displaystyle C(n+1,n+1)=C(n+1,n){text{ for }}ngeq 1}.


Formula 3 shows that the entry in the triangle is obtained recursively by adding numbers to the left and above in the triangle. The earliest appearance of the Catalan triangle along with the recursion formula is in page 214 of the treatise on Calculus published in 1800[2] by Louis François Antoine Arbogast.


Shapiro[3] introduces another triangle which he calls the Catalan triangle that is distinct from the triangle being discussed here.




Contents






  • 1 General formula


  • 2 Generalization


  • 3 A proof of the general formula for Cm(n,k){displaystyle C_{m}(n,k)}C_{{m}}(n,k)


  • 4 See also


  • 5 References





General formula


The general formula for C(n,k){displaystyle C(n,k)}C(n,k) is given by[1][4]


C(n,k)=(n+k)!(n−k+1)k!(n+1)!,{displaystyle C(n,k)={frac {(n+k)!(n-k+1)}{k!(n+1)!}},}C(n,k)={frac {(n+k)!(n-k+1)}{k!(n+1)!}},

where n and k are nonnegative integers and n! denotes the factorial. Thus, for k>0, C(n,k)=(n+kk)−(n+kk−1){displaystyle C(n,k)=left({begin{array}{c}n+k\kend{array}}right)-left({begin{array}{c}n+k\k-1end{array}}right)}{displaystyle C(n,k)=left({begin{array}{c}n+k\kend{array}}right)-left({begin{array}{c}n+k\k-1end{array}}right)}.


The diagonal C(n, n) is the n-th Catalan number. The row sum of the n-th row is the (n + 1)-th Catalan number.


Some values are given by[5]



























































































































n  k
0
1
2
3
4
5
6
7
8
0
1
1
1 1
2
1 2 2
3
1 3 5 5
4
1 4 9 14 14
5
1 5 14 28 42 42
6
1 6 20 48 90 132 132
7
1 7 27 75 165 297 429 429
8
1 8 35 110 275 572 1001 1430 1430


Generalization


Catalan's trapezoids are a countable set of number trapezoids which generalize Catalan’s triangle. Catalan's trapezoid of order m = 1, 2, 3, ... is a number trapezoid whose entries Cm(n,k){displaystyle C_{m}(n,k)}C_{{m}}(n,k) give the number of strings consisting of n X-s and k Y-s such that in every initial segment of the string the number of Y-s does not exceed the number of X-s by m or more.[6] By definition, Catalan's trapezoid of order m = 1 is Catalan's triangle, i.e., C1(n,k)=C(n,k){displaystyle C_{1}(n,k)=C(n,k)}C_{{1}}(n,k)=C(n,k).


Some values of Catalan's trapezoid of order m = 2 are given by















































































































n  k
0
1
2
3
4
5
6
7
8
0
1 1
1
1 2 2
2
1 3 5 5
3
1 4 9 14 14
4
1 5 14 28 42 42
5
1 6 20 48 90 132 132
6
1 7 27 75 165 297 429 429
7
1 8 35 110 275 572 1001 1430 1430

Some values of Catalan's trapezoid of order m = 3 are given by
























































































































n  k
0
1
2
3
4
5
6
7
8
9
0
1 1 1
1
1 2 3 3
2
1 3 6 9 9
3
1 4 10 19 28 28
4
1 5 15 34 62 90 90
5
1 6 21 55 117 207 297 297
6
1 7 28 83 200 407 704 1001 1001
7
1 8 36 119 319 726 1430 2431 3432 3432

Again, each element is the sum of the one above and the one to the left.


A general formula for Cm(n,k){displaystyle C_{m}(n,k)}C_{{m}}(n,k) is given by


Cm(n,k)={(n+kk)0≤k<m(n+kk)−(n+kk−m)m≤k≤n+m−10k>n+m−1{displaystyle C_{m}(n,k)={begin{cases}left({begin{array}{c}n+k\kend{array}}right)&,,,0leq k<m\\left({begin{array}{c}n+k\kend{array}}right)-left({begin{array}{c}n+k\k-mend{array}}right)&,,,mleq kleq n+m-1\\0&,,,k>n+m-1end{cases}}}C_{m}(n,k)={begin{cases}left({begin{array}{c}n+k\kend{array}}right)&,,,0leq k<m\\left({begin{array}{c}n+k\kend{array}}right)-left({begin{array}{c}n+k\k-mend{array}}right)&,,,mleq kleq n+m-1\\0&,,,k>n+m-1end{cases}}

( n = 0, 1, 2, ..., k = 0, 1, 2, ..., m = 1, 2, 3, ...).



A proof of the general formula for Cm(n,k){displaystyle C_{m}(n,k)}C_{{m}}(n,k)


One proof of the general formula involves extension of the Andres Reflection method as used in the second proof for the Catalan number. The following shows how every path from the bottom left (0,0) to the top right (k, n) of the diagram that crosses the constraint n - k + m - 1 = 0 can also be reflected to the end point (n + m, k - m).


General catalan number proof.png

Thus the number of ways that paths can cross n - k + m - 1 = 0 is as indicated in the above formula.



See also


  • Pascal's triangle


References





  1. ^ ab Bailey, D. F. (1996). "Counting Arrangements of 1's and -1's". Mathematics Magazine. 69: 128–131..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


  2. ^ Arbogast, L. F. A. (1800). "Du Calcul des Derivations".


  3. ^ Shapiro, L. W. (1976). "A Catalan Triangle". Discrete Mathematics. 14 (1): 83–90. doi:10.1016/0012-365x(76)90009-1.


  4. ^ Eric W. Weisstein. "Catalan's Triangle". MathWorld − A Wolfram Web Resource. Retrieved March 28, 2012.


  5. ^ Sloane, N. J. A. (ed.). "Sequence A009766 (Catalan's triangle)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved March 28, 2012.


  6. ^
    Reuveni, Shlomi (2014). "Catalan's trapezoids". Probability in the Engineering and Informational Sciences. 28 (03): 4391–4396. doi:10.1017/S0269964814000047.









這個網誌中的熱門文章

Hercules Kyvelos

Tangent Lines Diagram Along Smooth Curve

Yusuf al-Mu'taman ibn Hud