Ladder operator




In linear algebra (and its application to quantum mechanics), a raising or lowering operator (collectively known as ladder operators) is an operator that increases or decreases the eigenvalue of another operator. In quantum mechanics, the raising operator is sometimes called the creation operator, and the lowering operator the annihilation operator. Well-known applications of ladder operators in quantum mechanics are in the formalisms of the quantum harmonic oscillator and angular momentum.




Contents






  • 1 Terminology


  • 2 General formulation


  • 3 Angular momentum


    • 3.1 Applications in atomic and molecular physics




  • 4 Harmonic oscillator


  • 5 History


  • 6 See also


  • 7 References





Terminology



There is some confusion regarding the relationship between the raising and lowering ladder operators and the creation and annihilation operators commonly used in quantum field theory. The creation operator ai increments the number of particles in state i, while the corresponding annihilation operator ai decrements the number of particles in state i. This clearly satisfies the requirements of the above definition of a ladder operator: the incrementing or decrementing of the eigenvalue of another operator (in this case the particle number operator).


Confusion arises because the term ladder operator is typically used to describe an operator that acts to increment or decrement a quantum number describing the state of a system. To change the state of a particle with the creation/annihilation operators of QFT requires the use of both an annihilation operator to remove a particle from the initial state and a creation operator to add a particle to the final state.


The term "ladder operator" is also sometimes used in mathematics, in the context of the theory of Lie algebras and in particular the affine Lie algebras, to describe the su(2) subalgebras, from which the root system and the highest weight modules can be constructed by means of the ladder operators.[1] In particular, the highest weight is annihilated by the raising operators; the rest of the positive root space is obtained by repeatedly applying the lowering operators (one set of ladder operators per subalgebra).



General formulation


Suppose that two operators X and N have the commutation relation,


[N,X]=cX,{displaystyle [N,X]=cX,quad }[N,X]=cX,quad

for some scalar c. If |n⟩{displaystyle scriptstyle {|nrangle }}scriptstyle {|nrangle } is an eigenstate of N with eigenvalue equation,


N|n⟩=n|n⟩,{displaystyle N|nrangle =n|nrangle ,,}N|nrangle =n|nrangle ,,

then the operator X acts on |n⟩{displaystyle scriptstyle {|nrangle }}scriptstyle {|nrangle } in such a way as to shift the eigenvalue by c:


NX|n⟩=(XN+[N,X])|n⟩=XN|n⟩+[N,X]|n⟩=Xn|n⟩+cX|n⟩=(n+c)X|n⟩.{displaystyle {begin{aligned}NX|nrangle &=(XN+[N,X])|nrangle \&=XN|nrangle +[N,X]|nrangle \&=Xn|nrangle +cX|nrangle \&=(n+c)X|nrangle .end{aligned}}}{begin{aligned}NX|nrangle &=(XN+[N,X])|nrangle \&=XN|nrangle +[N,X]|nrangle \&=Xn|nrangle +cX|nrangle \&=(n+c)X|nrangle .end{aligned}}

In other words, if |n⟩{displaystyle scriptstyle {|nrangle }}scriptstyle {|nrangle } is an eigenstate of N with eigenvalue n then X|n⟩{displaystyle scriptstyle {X|nrangle }}scriptstyle {X|nrangle } is an eigenstate of N with eigenvalue n + c or it is zero. The operator X is a raising operator for N if c is real and positive, and a lowering operator for N if c is real and negative.


If N is a Hermitian operator then c must be real and the Hermitian adjoint of X obeys the commutation relation:


[N,X†]=−cX†.{displaystyle [N,X^{dagger }]=-cX^{dagger }.quad }[N,X^{dagger }]=-cX^{dagger }.quad

In particular, if X is a lowering operator for N then X is a raising operator for N and vice versa.



Angular momentum



A particular application of the ladder operator concept is found in the quantum mechanical treatment of angular momentum. For a general angular momentum vector, J, with components, Jx, Jy and Jz we define the two ladder operators, J+ and J:[2]


J+=Jx+iJy,{displaystyle J_{+}=J_{x}+iJ_{y},quad }J_{+}=J_{x}+iJ_{y},quad

J−=Jx−iJy,{displaystyle J_{-}=J_{x}-iJ_{y},quad }J_{-}=J_{x}-iJ_{y},quad

where i is the imaginary unit.


The commutation relation between the cartesian components of any angular momentum operator is given by


[Ji,Jj]=iℏϵijkJk,{displaystyle [J_{i},J_{j}]=ihbar epsilon _{ijk}J_{k},}[J_{i},J_{j}]=ihbar epsilon _{ijk}J_{k},

where εijk is the Levi-Civita symbol and each of i, j and k can take any of the values x, y and z. From this the commutation relations between the ladder operators and Jz can easily be obtained:



[Jz,J±]=±.{displaystyle left[J_{z},J_{pm }right]=pm hbar J_{pm }.quad }left[J_{z},J_{pm }right]=pm hbar J_{pm }.quad

[J+,J−]=2ℏJz.{displaystyle left[J_{+},J_{-}right]=2hbar J_{z}.quad }left[J_{+},J_{-}right]=2hbar J_{z}.quad


The properties of the ladder operators can be determined by observing how they modify the action of the Jz operator on a given state:


JzJ±|jm⟩=(J±Jz+[Jz,J±])|jm⟩=(J±Jz±)|jm⟩=ℏ(m±1)J±|jm⟩.{displaystyle {begin{aligned}J_{z}J_{pm }|j,mrangle &=left(J_{pm }J_{z}+left[J_{z},J_{pm }right]right)|j,mrangle \&=left(J_{pm }J_{z}pm hbar J_{pm }right)|j,mrangle \&=hbar left(mpm 1right)J_{pm }|j,mrangle .end{aligned}}}{begin{aligned}J_{z}J_{pm }|j,mrangle &=left(J_{pm }J_{z}+left[J_{z},J_{pm }right]right)|j,mrangle \&=left(J_{pm }J_{z}pm hbar J_{pm }right)|j,mrangle \&=hbar left(mpm 1right)J_{pm }|j,mrangle .end{aligned}}

Compare this result with:


Jz|j(m±1)⟩=ℏ(m±1)|j(m±1)⟩.{displaystyle J_{z}|j,(mpm 1)rangle =hbar (mpm 1)|j,(mpm 1)rangle .quad }{displaystyle J_{z}|j,(mpm 1)rangle =hbar (mpm 1)|j,(mpm 1)rangle .quad }

Thus we conclude that |jm⟩{displaystyle scriptstyle {J_{pm }|j,mrangle }}scriptstyle {J_{pm }|j,mrangle } is some scalar multiplied by |jm±1⟩{displaystyle scriptstyle {|j,mpm 1rangle }}scriptstyle {|j,mpm 1rangle },


J+|jm⟩|jm+1⟩,{displaystyle J_{+}|j,mrangle =alpha |j,m+1rangle ,quad }J_{+}|j,mrangle =alpha |j,m+1rangle ,quad

J−|jm⟩|jm−1⟩.{displaystyle J_{-}|j,mrangle =beta |j,m-1rangle .quad }J_{-}|j,mrangle =beta |j,m-1rangle .quad

This illustrates the defining feature of ladder operators in quantum mechanics: the incrementing (or decrementing) of a quantum number, thus mapping one quantum state onto another. This is the reason that they are often known as raising and lowering operators.


To obtain the values of α and β we first take the norm of each operator, recognizing that J+ and J are a Hermitian conjugate pair (=J∓{displaystyle scriptstyle {J_{pm }=J_{mp }^{dagger }}}scriptstyle {J_{pm }=J_{mp }^{dagger }}),



jm|J+†J+|jm⟩=⟨jm|J−J+|jm⟩=⟨j(m+1)|αα|j(m+1)⟩=|α|2{displaystyle langle j,m|J_{+}^{dagger }J_{+}|j,mrangle =langle j,m|J_{-}J_{+}|j,mrangle =langle j,(m+1)|alpha ^{*}alpha |j,(m+1)rangle =|alpha |^{2}}{displaystyle langle j,m|J_{+}^{dagger }J_{+}|j,mrangle =langle j,m|J_{-}J_{+}|j,mrangle =langle j,(m+1)|alpha ^{*}alpha |j,(m+1)rangle =|alpha |^{2}},


jm|J−J−|jm⟩=⟨jm|J+J−|jm⟩=⟨j(m−1)|ββ|j(m−1)⟩=|β|2{displaystyle langle j,m|J_{-}^{dagger }J_{-}|j,mrangle =langle j,m|J_{+}J_{-}|j,mrangle =langle j,(m-1)|beta ^{*}beta |j,(m-1)rangle =|beta |^{2}}{displaystyle langle j,m|J_{-}^{dagger }J_{-}|j,mrangle =langle j,m|J_{+}J_{-}|j,mrangle =langle j,(m-1)|beta ^{*}beta |j,(m-1)rangle =|beta |^{2}}.

The product of the ladder operators can be expressed in terms of the commuting pair J2 and Jz,


J−J+=(Jx−iJy)(Jx+iJy)=Jx2+Jy2+i[Jx,Jy]=J2−Jz2−Jz,{displaystyle J_{-}J_{+}=(J_{x}-iJ_{y})(J_{x}+iJ_{y})=J_{x}^{2}+J_{y}^{2}+i[J_{x},J_{y}]=J^{2}-J_{z}^{2}-hbar J_{z},}J_{-}J_{+}=(J_{x}-iJ_{y})(J_{x}+iJ_{y})=J_{x}^{2}+J_{y}^{2}+i[J_{x},J_{y}]=J^{2}-J_{z}^{2}-hbar J_{z},

J+J−=(Jx+iJy)(Jx−iJy)=Jx2+Jy2−i[Jx,Jy]=J2−Jz2+ℏJz.{displaystyle J_{+}J_{-}=(J_{x}+iJ_{y})(J_{x}-iJ_{y})=J_{x}^{2}+J_{y}^{2}-i[J_{x},J_{y}]=J^{2}-J_{z}^{2}+hbar J_{z}.}J_{+}J_{-}=(J_{x}+iJ_{y})(J_{x}-iJ_{y})=J_{x}^{2}+J_{y}^{2}-i[J_{x},J_{y}]=J^{2}-J_{z}^{2}+hbar J_{z}.

Thus we can express the values of |α|2 and |β|2 in terms of the eigenvalues of J2 and Jz,


|2=ℏ2j(j+1)−2m2−2m=ℏ2(j−m)(j+m+1),{displaystyle |alpha |^{2}=hbar ^{2}j(j+1)-hbar ^{2}m^{2}-hbar ^{2}m=hbar ^{2}(j-m)(j+m+1),}|alpha |^{2}=hbar ^{2}j(j+1)-hbar ^{2}m^{2}-hbar ^{2}m=hbar ^{2}(j-m)(j+m+1),

|2=ℏ2j(j+1)−2m2+ℏ2m=ℏ2(j+m)(j−m+1).{displaystyle |beta |^{2}=hbar ^{2}j(j+1)-hbar ^{2}m^{2}+hbar ^{2}m=hbar ^{2}(j+m)(j-m+1).}|beta |^{2}=hbar ^{2}j(j+1)-hbar ^{2}m^{2}+hbar ^{2}m=hbar ^{2}(j+m)(j-m+1).

The phases of α and β are not physically significant, thus they can be chosen to be positive and real (Condon-Shortley phase convention). We then have:[3]


J+|jm⟩=ℏ(j−m)(j+m+1)|jm+1⟩=ℏj(j+1)−m(m+1)|jm+1⟩,{displaystyle J_{+}|j,mrangle =hbar {sqrt {(j-m)(j+m+1)}}|j,m+1rangle =hbar {sqrt {j(j+1)-m(m+1)}}|j,m+1rangle ,}J_{+}|j,mrangle =hbar {sqrt {(j-m)(j+m+1)}}|j,m+1rangle =hbar {sqrt {j(j+1)-m(m+1)}}|j,m+1rangle ,

J−|jm⟩=ℏ(j+m)(j−m+1)|jm−1⟩=ℏj(j+1)−m(m−1)|jm−1⟩.{displaystyle J_{-}|j,mrangle =hbar {sqrt {(j+m)(j-m+1)}}|j,m-1rangle =hbar {sqrt {j(j+1)-m(m-1)}}|j,m-1rangle .}J_{-}|j,mrangle =hbar {sqrt {(j+m)(j-m+1)}}|j,m-1rangle =hbar {sqrt {j(j+1)-m(m-1)}}|j,m-1rangle .

Confirming that m is bounded by the value of j (j≤m≤j{displaystyle scriptstyle {-jleq mleq j}}scriptstyle {-jleq mleq j}) we have:


J+|jj⟩=0,{displaystyle J_{+}|j,jrangle =0,,}J_{+}|j,jrangle =0,,

J−|j(−j)⟩=0.{displaystyle J_{-}|j,(-j)rangle =0.,}{displaystyle J_{-}|j,(-j)rangle =0.,}

The above demonstration is effectively the construction of the Clebsch-Gordan coefficients.



Applications in atomic and molecular physics


Many terms in the Hamiltonians of atomic or molecular systems involve the scalar product of angular momentum operators. An example is the magnetic dipole term in the hyperfine Hamiltonian,[4]


H^D=A^I⋅J,{displaystyle {hat {H}}_{text{D}}={hat {A}}mathbf {I} cdot mathbf {J} ,quad }{hat {H}}_{text{D}}={hat {A}}mathbf {I} cdot mathbf {J} ,quad

where I is the nuclear spin.
Angular momentum algebra can often be simplified by recasting it in the spherical basis. Using the notation of spherical tensor operators, the "-1", "0" and "+1" components of J(1)J are given by,[5]


J−1(1)=12(Jx−iJy)=J−2J0(1)=JzJ+1(1)=−12(Jx+iJy)=−J+2.{displaystyle {begin{aligned}J_{-1}^{(1)}&={dfrac {1}{sqrt {2}}}(J_{x}-iJ_{y})={dfrac {J_{-}}{sqrt {2}}}\J_{0}^{(1)}&=J_{z}\J_{+1}^{(1)}&=-{frac {1}{sqrt {2}}}(J_{x}+iJ_{y})=-{frac {J_{+}}{sqrt {2}}}.end{aligned}}}{begin{aligned}J_{-1}^{(1)}&={dfrac {1}{sqrt {2}}}(J_{x}-iJ_{y})={dfrac {J_{-}}{sqrt {2}}}\J_{0}^{(1)}&=J_{z}\J_{+1}^{(1)}&=-{frac {1}{sqrt {2}}}(J_{x}+iJ_{y})=-{frac {J_{+}}{sqrt {2}}}.end{aligned}}

From these definitions it can be shown that the above scalar product can be expanded as


I(1)⋅J(1)=∑n=−1+1(−1)nIn(1)J−n(1)=I0(1)J0(1)−I−1(1)J+1(1)−I+1(1)J−1(1),{displaystyle mathbf {I} ^{(1)}cdot mathbf {J} ^{(1)}=sum _{n=-1}^{+1}(-1)^{n}I_{n}^{(1)}J_{-n}^{(1)}=I_{0}^{(1)}J_{0}^{(1)}-I_{-1}^{(1)}J_{+1}^{(1)}-I_{+1}^{(1)}J_{-1}^{(1)},}mathbf {I} ^{(1)}cdot mathbf {J} ^{(1)}=sum _{n=-1}^{+1}(-1)^{n}I_{n}^{(1)}J_{-n}^{(1)}=I_{0}^{(1)}J_{0}^{(1)}-I_{-1}^{(1)}J_{+1}^{(1)}-I_{+1}^{(1)}J_{-1}^{(1)},

The significance of this expansion is that it clearly indicates which states are coupled by this term in the Hamiltonian, that is those with quantum numbers differing by mi = ±1 and mj = ∓1 only.



Harmonic oscillator



Another application of the ladder operator concept is found in the quantum mechanical treatment of the harmonic oscillator. We can define the lowering and raising operators as


a=mω2ℏ(x^+imωp^)a†=mω2ℏ(x^imωp^){displaystyle {begin{aligned}a&={sqrt {momega over 2hbar }}left({hat {x}}+{i over momega }{hat {p}}right)\a^{dagger }&={sqrt {momega over 2hbar }}left({hat {x}}-{i over momega }{hat {p}}right)end{aligned}}}{begin{aligned}a&={sqrt {momega  over 2hbar }}left({hat {x}}+{i over momega }{hat {p}}right)\a^{dagger }&={sqrt {momega  over 2hbar }}left({hat {x}}-{i over momega }{hat {p}}right)end{aligned}}

They provide a convenient means to extract energy eigenvalues without directly solving the system's differential equation.



History


Many sources credit Dirac with the invention of ladder operators.[6] Dirac's use of the ladder operators shows that the total angular momentum quantum number j{displaystyle j}j needs to be a non-negative half integer multiple of ħ.



See also



  • Creation and annihilation operators

  • Quantum harmonic oscillator



References





  1. ^ Fuchs, Jurgen (1992), Affine Lie Algebras and Quantum Groups, Cambridge University Press, ISBN 0-521-48412-X.mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


  2. ^ de Lange, O. L.; R. E. Raab (1986). "Ladder operators for orbital angular momentum". American Journal of Physics. 54 (4): 372–375. Bibcode:1986AmJPh..54..372D. doi:10.1119/1.14625.


  3. ^ Sakurai, Jun J. (1994). Modern Quantum Mechanics. Delhi, India: Pearson Education, Inc. p. 192. ISBN 81-7808-006-0.


  4. ^ Woodgate, Gordon K. (1983-10-06). Elementary Atomic Structure. ISBN 978-0-19-851156-4. Retrieved 2009-03-03.


  5. ^ "Angular Momentum Operators". Graduate Quantum Mechanics Notes. University of Virginia. Retrieved 2009-04-06.


  6. ^ http://www.fisica.net/quantica/quantum_harmonic_oscillator_lecture.pdf









這個網誌中的熱門文章

Hercules Kyvelos

Tangent Lines Diagram Along Smooth Curve

Yusuf al-Mu'taman ibn Hud