How to combine two or more vectors of arbitrary types in C++
up vote
7
down vote
favorite
I've got the following code that combines two vectors of arbitrary types into a combinatorial, i.e. std::vector<std::tuple<A, B>>
.
template<class A, class B>
std::vector<std::tuple<A, B>> combine(const std::vector<A>& a, const std::vector<B>& b) {
const auto combine_parts_ = (const A& x, const B& y) {
auto result = std::tuple_cat(std::make_tuple(x), std::make_tuple(y));
return result;
};
std::vector<std::tuple<A, B>> results;
for (const auto& x : a) {
for (const auto& y : b) {
results.push_back(combine_parts_(x, y));
}
}
return results;
}
However, I'm unclear how to extend that to an arbitrary number of types/vectors. I don't care about duplicate types; in fact there may be two or more sets of the same type involved. That's okay.
Some example use cases, for instance:
const auto combinations = combine(
std::vector<int>({1,2,3})
, std::vector<int>({1,2,3})
);
const auto combinations2 = combine(
std::vector<int>({1,2,3})
, std::vector<int>({1,2,3})
, std::vector<bool>({true,false})
);
const auto combinations3 = combine(
std::vector<int>({1,2,3})
, std::vector<int>({1,2,3})
, std::vector<bool>({true,false})
, std::vector<char>({'a','b','c','d','e'})
);
Chiefly, what I want to do is avoid the ugly nested for loop. At the same time, I want to combine some unit testing combinatorial use cases in order to work with the resulting std::tuple<...>
as the test case.
Note, I am not talking about permutations of a homogeneous set here. That's been a point of confusion from prior questions.
I think it might have something to do with templates, variadics, std::tuple_cat
, somewhere along the way, but I don't know.
Thoughts? Suggestions?
c++ vector tuples cartesian-product
add a comment |
up vote
7
down vote
favorite
I've got the following code that combines two vectors of arbitrary types into a combinatorial, i.e. std::vector<std::tuple<A, B>>
.
template<class A, class B>
std::vector<std::tuple<A, B>> combine(const std::vector<A>& a, const std::vector<B>& b) {
const auto combine_parts_ = (const A& x, const B& y) {
auto result = std::tuple_cat(std::make_tuple(x), std::make_tuple(y));
return result;
};
std::vector<std::tuple<A, B>> results;
for (const auto& x : a) {
for (const auto& y : b) {
results.push_back(combine_parts_(x, y));
}
}
return results;
}
However, I'm unclear how to extend that to an arbitrary number of types/vectors. I don't care about duplicate types; in fact there may be two or more sets of the same type involved. That's okay.
Some example use cases, for instance:
const auto combinations = combine(
std::vector<int>({1,2,3})
, std::vector<int>({1,2,3})
);
const auto combinations2 = combine(
std::vector<int>({1,2,3})
, std::vector<int>({1,2,3})
, std::vector<bool>({true,false})
);
const auto combinations3 = combine(
std::vector<int>({1,2,3})
, std::vector<int>({1,2,3})
, std::vector<bool>({true,false})
, std::vector<char>({'a','b','c','d','e'})
);
Chiefly, what I want to do is avoid the ugly nested for loop. At the same time, I want to combine some unit testing combinatorial use cases in order to work with the resulting std::tuple<...>
as the test case.
Note, I am not talking about permutations of a homogeneous set here. That's been a point of confusion from prior questions.
I think it might have something to do with templates, variadics, std::tuple_cat
, somewhere along the way, but I don't know.
Thoughts? Suggestions?
c++ vector tuples cartesian-product
add a comment |
up vote
7
down vote
favorite
up vote
7
down vote
favorite
I've got the following code that combines two vectors of arbitrary types into a combinatorial, i.e. std::vector<std::tuple<A, B>>
.
template<class A, class B>
std::vector<std::tuple<A, B>> combine(const std::vector<A>& a, const std::vector<B>& b) {
const auto combine_parts_ = (const A& x, const B& y) {
auto result = std::tuple_cat(std::make_tuple(x), std::make_tuple(y));
return result;
};
std::vector<std::tuple<A, B>> results;
for (const auto& x : a) {
for (const auto& y : b) {
results.push_back(combine_parts_(x, y));
}
}
return results;
}
However, I'm unclear how to extend that to an arbitrary number of types/vectors. I don't care about duplicate types; in fact there may be two or more sets of the same type involved. That's okay.
Some example use cases, for instance:
const auto combinations = combine(
std::vector<int>({1,2,3})
, std::vector<int>({1,2,3})
);
const auto combinations2 = combine(
std::vector<int>({1,2,3})
, std::vector<int>({1,2,3})
, std::vector<bool>({true,false})
);
const auto combinations3 = combine(
std::vector<int>({1,2,3})
, std::vector<int>({1,2,3})
, std::vector<bool>({true,false})
, std::vector<char>({'a','b','c','d','e'})
);
Chiefly, what I want to do is avoid the ugly nested for loop. At the same time, I want to combine some unit testing combinatorial use cases in order to work with the resulting std::tuple<...>
as the test case.
Note, I am not talking about permutations of a homogeneous set here. That's been a point of confusion from prior questions.
I think it might have something to do with templates, variadics, std::tuple_cat
, somewhere along the way, but I don't know.
Thoughts? Suggestions?
c++ vector tuples cartesian-product
I've got the following code that combines two vectors of arbitrary types into a combinatorial, i.e. std::vector<std::tuple<A, B>>
.
template<class A, class B>
std::vector<std::tuple<A, B>> combine(const std::vector<A>& a, const std::vector<B>& b) {
const auto combine_parts_ = (const A& x, const B& y) {
auto result = std::tuple_cat(std::make_tuple(x), std::make_tuple(y));
return result;
};
std::vector<std::tuple<A, B>> results;
for (const auto& x : a) {
for (const auto& y : b) {
results.push_back(combine_parts_(x, y));
}
}
return results;
}
However, I'm unclear how to extend that to an arbitrary number of types/vectors. I don't care about duplicate types; in fact there may be two or more sets of the same type involved. That's okay.
Some example use cases, for instance:
const auto combinations = combine(
std::vector<int>({1,2,3})
, std::vector<int>({1,2,3})
);
const auto combinations2 = combine(
std::vector<int>({1,2,3})
, std::vector<int>({1,2,3})
, std::vector<bool>({true,false})
);
const auto combinations3 = combine(
std::vector<int>({1,2,3})
, std::vector<int>({1,2,3})
, std::vector<bool>({true,false})
, std::vector<char>({'a','b','c','d','e'})
);
Chiefly, what I want to do is avoid the ugly nested for loop. At the same time, I want to combine some unit testing combinatorial use cases in order to work with the resulting std::tuple<...>
as the test case.
Note, I am not talking about permutations of a homogeneous set here. That's been a point of confusion from prior questions.
I think it might have something to do with templates, variadics, std::tuple_cat
, somewhere along the way, but I don't know.
Thoughts? Suggestions?
c++ vector tuples cartesian-product
c++ vector tuples cartesian-product
edited Nov 8 at 22:40
Jarod42
112k1299179
112k1299179
asked Nov 8 at 22:12
mwpowellhtx
1038
1038
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
up vote
4
down vote
accepted
If you want to compute the Cartesian product of heterogeneous vectors, you may do something like:
template <std::size_t N>
bool increase(const std::array<std::size_t, N>& sizes, std::array<std::size_t, N>& it)
{
for (std::size_t i = 0; i != N; ++i) {
const std::size_t index = N - 1 - i;
++it[index];
if (it[index] >= sizes[index]) {
it[index] = 0;
} else {
return true;
}
}
return false;
}
template <typename F, std::size_t ... Is, std::size_t N, typename Tuple>
void apply_impl(F&& f,
std::index_sequence<Is...>,
const std::array<std::size_t, N>& it,
const Tuple& tuple)
{
f(std::get<Is>(tuple)[it[Is]]...);
}
template <typename F, typename ... Ts>
void cartesian_product_apply(F&& f, const std::vector<Ts>&... vs)
{
constexpr std::size_t N = sizeof...(Ts);
std::array<std::size_t, N> sizes{{vs.size()...}};
std::array<std::size_t, N> it{};
do {
apply_impl(f, std::index_sequence_for<Ts...>(), it, std::tie(vs...));
} while (increase(sizes, it));
}
And finally:
template <typename ... Ts>
std::vector<std::tuple<Ts...>> cartesian_product(const std::vector<Ts>&... vs)
{
std::vector<std::tuple<Ts...>> res;
cartesian_product_apply([&res](const auto&... args) { res.emplace_back(args...); },
vs...);
return res;
}
With usage similar to:
std::vector<int> v1 = {1, 2, 3};
std::vector<std::string> v2 = {" A "," B "};
std::vector<int> v3 = {4, 5};
const auto res = cartesian_product(v1, v2, v3);
for (const auto& t : res) {
// ...
}
Demo
It's interesting, but for me it seems MSVC (2017)std::array
support is a bit lacking. Still, I think the fundamentals are there.
– mwpowellhtx
Nov 8 at 23:58
Compile fine here with Msvc 2017 (Version 15.8.7)
– Jarod42
Nov 9 at 0:26
add a comment |
up vote
0
down vote
Slightly adapted, and with warnings disabled:
struct CartesianProduct {
template<typename... Tys>
std::vector<std::tuple<Tys...>> operator()(const std::vector<Tys>&... vectors) {
std::vector<std::tuple<Tys...>> results;
apply([&results](const auto&... args) {
results.emplace_back(args...); }, vectors...);
return results;
}
private:
template<std::size_t N>
bool __increase(const std::array<std::size_t, N>& sizes, std::array<std::size_t, N>& it) {
for (std::size_t i = 0; i < N; ++i) {
const std::size_t index = N - 1 - i;
++it[index];
if (it[index] >= sizes[index]) {
it[index] = 0;
}
else {
return true;
}
}
return false;
}
template<typename Cb, std::size_t... Is, std::size_t N, typename Tup>
void __apply_impl(Cb&& cb, std::index_sequence<Is...>
, const std::array<std::size_t, N>& it, const Tup& tup) {
cb(std::get<Is>(tup)[it[Is]]...);
}
template <typename Cb, typename... Tys>
void apply(Cb&& cb, const std::vector<Tys>&... vectors) {
constexpr std::size_t N = sizeof...(Tys);
std::array<std::size_t, N> sizes{ {vectors.size()...} };
#pragma warning (disable: 4834)
// TODO: TBD: warning C4834: discarding return value of function with 'nodiscard' attribute...
std::array<std::size_t, N> it{ {(vectors.size(), 0u)...} };
#pragma warning (default: 4834)
do {
__apply_impl(cb, std::index_sequence_for<Tys...>(), it, std::tie(vectors...));
} while (__increase(sizes, it));
}
};
Remembered to include tuple
, vector
, as well as array
.
Simple to use:
CartesianProduct prod;
// ...
const auto product_ = prod(ints_, doubles_, bools_);
CHECK(std::tuple_size<decltype(product_ )::value_type>::value == 3);
Although not entirely positive what the warning is all about.
warning is for discarded valuevs.size()
(but used for variadic expansion). Once I think bout it,std::array<std::size_t, N> it{};
should be enough.
– Jarod42
Nov 9 at 8:36
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
4
down vote
accepted
If you want to compute the Cartesian product of heterogeneous vectors, you may do something like:
template <std::size_t N>
bool increase(const std::array<std::size_t, N>& sizes, std::array<std::size_t, N>& it)
{
for (std::size_t i = 0; i != N; ++i) {
const std::size_t index = N - 1 - i;
++it[index];
if (it[index] >= sizes[index]) {
it[index] = 0;
} else {
return true;
}
}
return false;
}
template <typename F, std::size_t ... Is, std::size_t N, typename Tuple>
void apply_impl(F&& f,
std::index_sequence<Is...>,
const std::array<std::size_t, N>& it,
const Tuple& tuple)
{
f(std::get<Is>(tuple)[it[Is]]...);
}
template <typename F, typename ... Ts>
void cartesian_product_apply(F&& f, const std::vector<Ts>&... vs)
{
constexpr std::size_t N = sizeof...(Ts);
std::array<std::size_t, N> sizes{{vs.size()...}};
std::array<std::size_t, N> it{};
do {
apply_impl(f, std::index_sequence_for<Ts...>(), it, std::tie(vs...));
} while (increase(sizes, it));
}
And finally:
template <typename ... Ts>
std::vector<std::tuple<Ts...>> cartesian_product(const std::vector<Ts>&... vs)
{
std::vector<std::tuple<Ts...>> res;
cartesian_product_apply([&res](const auto&... args) { res.emplace_back(args...); },
vs...);
return res;
}
With usage similar to:
std::vector<int> v1 = {1, 2, 3};
std::vector<std::string> v2 = {" A "," B "};
std::vector<int> v3 = {4, 5};
const auto res = cartesian_product(v1, v2, v3);
for (const auto& t : res) {
// ...
}
Demo
It's interesting, but for me it seems MSVC (2017)std::array
support is a bit lacking. Still, I think the fundamentals are there.
– mwpowellhtx
Nov 8 at 23:58
Compile fine here with Msvc 2017 (Version 15.8.7)
– Jarod42
Nov 9 at 0:26
add a comment |
up vote
4
down vote
accepted
If you want to compute the Cartesian product of heterogeneous vectors, you may do something like:
template <std::size_t N>
bool increase(const std::array<std::size_t, N>& sizes, std::array<std::size_t, N>& it)
{
for (std::size_t i = 0; i != N; ++i) {
const std::size_t index = N - 1 - i;
++it[index];
if (it[index] >= sizes[index]) {
it[index] = 0;
} else {
return true;
}
}
return false;
}
template <typename F, std::size_t ... Is, std::size_t N, typename Tuple>
void apply_impl(F&& f,
std::index_sequence<Is...>,
const std::array<std::size_t, N>& it,
const Tuple& tuple)
{
f(std::get<Is>(tuple)[it[Is]]...);
}
template <typename F, typename ... Ts>
void cartesian_product_apply(F&& f, const std::vector<Ts>&... vs)
{
constexpr std::size_t N = sizeof...(Ts);
std::array<std::size_t, N> sizes{{vs.size()...}};
std::array<std::size_t, N> it{};
do {
apply_impl(f, std::index_sequence_for<Ts...>(), it, std::tie(vs...));
} while (increase(sizes, it));
}
And finally:
template <typename ... Ts>
std::vector<std::tuple<Ts...>> cartesian_product(const std::vector<Ts>&... vs)
{
std::vector<std::tuple<Ts...>> res;
cartesian_product_apply([&res](const auto&... args) { res.emplace_back(args...); },
vs...);
return res;
}
With usage similar to:
std::vector<int> v1 = {1, 2, 3};
std::vector<std::string> v2 = {" A "," B "};
std::vector<int> v3 = {4, 5};
const auto res = cartesian_product(v1, v2, v3);
for (const auto& t : res) {
// ...
}
Demo
It's interesting, but for me it seems MSVC (2017)std::array
support is a bit lacking. Still, I think the fundamentals are there.
– mwpowellhtx
Nov 8 at 23:58
Compile fine here with Msvc 2017 (Version 15.8.7)
– Jarod42
Nov 9 at 0:26
add a comment |
up vote
4
down vote
accepted
up vote
4
down vote
accepted
If you want to compute the Cartesian product of heterogeneous vectors, you may do something like:
template <std::size_t N>
bool increase(const std::array<std::size_t, N>& sizes, std::array<std::size_t, N>& it)
{
for (std::size_t i = 0; i != N; ++i) {
const std::size_t index = N - 1 - i;
++it[index];
if (it[index] >= sizes[index]) {
it[index] = 0;
} else {
return true;
}
}
return false;
}
template <typename F, std::size_t ... Is, std::size_t N, typename Tuple>
void apply_impl(F&& f,
std::index_sequence<Is...>,
const std::array<std::size_t, N>& it,
const Tuple& tuple)
{
f(std::get<Is>(tuple)[it[Is]]...);
}
template <typename F, typename ... Ts>
void cartesian_product_apply(F&& f, const std::vector<Ts>&... vs)
{
constexpr std::size_t N = sizeof...(Ts);
std::array<std::size_t, N> sizes{{vs.size()...}};
std::array<std::size_t, N> it{};
do {
apply_impl(f, std::index_sequence_for<Ts...>(), it, std::tie(vs...));
} while (increase(sizes, it));
}
And finally:
template <typename ... Ts>
std::vector<std::tuple<Ts...>> cartesian_product(const std::vector<Ts>&... vs)
{
std::vector<std::tuple<Ts...>> res;
cartesian_product_apply([&res](const auto&... args) { res.emplace_back(args...); },
vs...);
return res;
}
With usage similar to:
std::vector<int> v1 = {1, 2, 3};
std::vector<std::string> v2 = {" A "," B "};
std::vector<int> v3 = {4, 5};
const auto res = cartesian_product(v1, v2, v3);
for (const auto& t : res) {
// ...
}
Demo
If you want to compute the Cartesian product of heterogeneous vectors, you may do something like:
template <std::size_t N>
bool increase(const std::array<std::size_t, N>& sizes, std::array<std::size_t, N>& it)
{
for (std::size_t i = 0; i != N; ++i) {
const std::size_t index = N - 1 - i;
++it[index];
if (it[index] >= sizes[index]) {
it[index] = 0;
} else {
return true;
}
}
return false;
}
template <typename F, std::size_t ... Is, std::size_t N, typename Tuple>
void apply_impl(F&& f,
std::index_sequence<Is...>,
const std::array<std::size_t, N>& it,
const Tuple& tuple)
{
f(std::get<Is>(tuple)[it[Is]]...);
}
template <typename F, typename ... Ts>
void cartesian_product_apply(F&& f, const std::vector<Ts>&... vs)
{
constexpr std::size_t N = sizeof...(Ts);
std::array<std::size_t, N> sizes{{vs.size()...}};
std::array<std::size_t, N> it{};
do {
apply_impl(f, std::index_sequence_for<Ts...>(), it, std::tie(vs...));
} while (increase(sizes, it));
}
And finally:
template <typename ... Ts>
std::vector<std::tuple<Ts...>> cartesian_product(const std::vector<Ts>&... vs)
{
std::vector<std::tuple<Ts...>> res;
cartesian_product_apply([&res](const auto&... args) { res.emplace_back(args...); },
vs...);
return res;
}
With usage similar to:
std::vector<int> v1 = {1, 2, 3};
std::vector<std::string> v2 = {" A "," B "};
std::vector<int> v3 = {4, 5};
const auto res = cartesian_product(v1, v2, v3);
for (const auto& t : res) {
// ...
}
Demo
edited Nov 9 at 8:51
answered Nov 8 at 22:47
Jarod42
112k1299179
112k1299179
It's interesting, but for me it seems MSVC (2017)std::array
support is a bit lacking. Still, I think the fundamentals are there.
– mwpowellhtx
Nov 8 at 23:58
Compile fine here with Msvc 2017 (Version 15.8.7)
– Jarod42
Nov 9 at 0:26
add a comment |
It's interesting, but for me it seems MSVC (2017)std::array
support is a bit lacking. Still, I think the fundamentals are there.
– mwpowellhtx
Nov 8 at 23:58
Compile fine here with Msvc 2017 (Version 15.8.7)
– Jarod42
Nov 9 at 0:26
It's interesting, but for me it seems MSVC (2017)
std::array
support is a bit lacking. Still, I think the fundamentals are there.– mwpowellhtx
Nov 8 at 23:58
It's interesting, but for me it seems MSVC (2017)
std::array
support is a bit lacking. Still, I think the fundamentals are there.– mwpowellhtx
Nov 8 at 23:58
Compile fine here with Msvc 2017 (Version 15.8.7)
– Jarod42
Nov 9 at 0:26
Compile fine here with Msvc 2017 (Version 15.8.7)
– Jarod42
Nov 9 at 0:26
add a comment |
up vote
0
down vote
Slightly adapted, and with warnings disabled:
struct CartesianProduct {
template<typename... Tys>
std::vector<std::tuple<Tys...>> operator()(const std::vector<Tys>&... vectors) {
std::vector<std::tuple<Tys...>> results;
apply([&results](const auto&... args) {
results.emplace_back(args...); }, vectors...);
return results;
}
private:
template<std::size_t N>
bool __increase(const std::array<std::size_t, N>& sizes, std::array<std::size_t, N>& it) {
for (std::size_t i = 0; i < N; ++i) {
const std::size_t index = N - 1 - i;
++it[index];
if (it[index] >= sizes[index]) {
it[index] = 0;
}
else {
return true;
}
}
return false;
}
template<typename Cb, std::size_t... Is, std::size_t N, typename Tup>
void __apply_impl(Cb&& cb, std::index_sequence<Is...>
, const std::array<std::size_t, N>& it, const Tup& tup) {
cb(std::get<Is>(tup)[it[Is]]...);
}
template <typename Cb, typename... Tys>
void apply(Cb&& cb, const std::vector<Tys>&... vectors) {
constexpr std::size_t N = sizeof...(Tys);
std::array<std::size_t, N> sizes{ {vectors.size()...} };
#pragma warning (disable: 4834)
// TODO: TBD: warning C4834: discarding return value of function with 'nodiscard' attribute...
std::array<std::size_t, N> it{ {(vectors.size(), 0u)...} };
#pragma warning (default: 4834)
do {
__apply_impl(cb, std::index_sequence_for<Tys...>(), it, std::tie(vectors...));
} while (__increase(sizes, it));
}
};
Remembered to include tuple
, vector
, as well as array
.
Simple to use:
CartesianProduct prod;
// ...
const auto product_ = prod(ints_, doubles_, bools_);
CHECK(std::tuple_size<decltype(product_ )::value_type>::value == 3);
Although not entirely positive what the warning is all about.
warning is for discarded valuevs.size()
(but used for variadic expansion). Once I think bout it,std::array<std::size_t, N> it{};
should be enough.
– Jarod42
Nov 9 at 8:36
add a comment |
up vote
0
down vote
Slightly adapted, and with warnings disabled:
struct CartesianProduct {
template<typename... Tys>
std::vector<std::tuple<Tys...>> operator()(const std::vector<Tys>&... vectors) {
std::vector<std::tuple<Tys...>> results;
apply([&results](const auto&... args) {
results.emplace_back(args...); }, vectors...);
return results;
}
private:
template<std::size_t N>
bool __increase(const std::array<std::size_t, N>& sizes, std::array<std::size_t, N>& it) {
for (std::size_t i = 0; i < N; ++i) {
const std::size_t index = N - 1 - i;
++it[index];
if (it[index] >= sizes[index]) {
it[index] = 0;
}
else {
return true;
}
}
return false;
}
template<typename Cb, std::size_t... Is, std::size_t N, typename Tup>
void __apply_impl(Cb&& cb, std::index_sequence<Is...>
, const std::array<std::size_t, N>& it, const Tup& tup) {
cb(std::get<Is>(tup)[it[Is]]...);
}
template <typename Cb, typename... Tys>
void apply(Cb&& cb, const std::vector<Tys>&... vectors) {
constexpr std::size_t N = sizeof...(Tys);
std::array<std::size_t, N> sizes{ {vectors.size()...} };
#pragma warning (disable: 4834)
// TODO: TBD: warning C4834: discarding return value of function with 'nodiscard' attribute...
std::array<std::size_t, N> it{ {(vectors.size(), 0u)...} };
#pragma warning (default: 4834)
do {
__apply_impl(cb, std::index_sequence_for<Tys...>(), it, std::tie(vectors...));
} while (__increase(sizes, it));
}
};
Remembered to include tuple
, vector
, as well as array
.
Simple to use:
CartesianProduct prod;
// ...
const auto product_ = prod(ints_, doubles_, bools_);
CHECK(std::tuple_size<decltype(product_ )::value_type>::value == 3);
Although not entirely positive what the warning is all about.
warning is for discarded valuevs.size()
(but used for variadic expansion). Once I think bout it,std::array<std::size_t, N> it{};
should be enough.
– Jarod42
Nov 9 at 8:36
add a comment |
up vote
0
down vote
up vote
0
down vote
Slightly adapted, and with warnings disabled:
struct CartesianProduct {
template<typename... Tys>
std::vector<std::tuple<Tys...>> operator()(const std::vector<Tys>&... vectors) {
std::vector<std::tuple<Tys...>> results;
apply([&results](const auto&... args) {
results.emplace_back(args...); }, vectors...);
return results;
}
private:
template<std::size_t N>
bool __increase(const std::array<std::size_t, N>& sizes, std::array<std::size_t, N>& it) {
for (std::size_t i = 0; i < N; ++i) {
const std::size_t index = N - 1 - i;
++it[index];
if (it[index] >= sizes[index]) {
it[index] = 0;
}
else {
return true;
}
}
return false;
}
template<typename Cb, std::size_t... Is, std::size_t N, typename Tup>
void __apply_impl(Cb&& cb, std::index_sequence<Is...>
, const std::array<std::size_t, N>& it, const Tup& tup) {
cb(std::get<Is>(tup)[it[Is]]...);
}
template <typename Cb, typename... Tys>
void apply(Cb&& cb, const std::vector<Tys>&... vectors) {
constexpr std::size_t N = sizeof...(Tys);
std::array<std::size_t, N> sizes{ {vectors.size()...} };
#pragma warning (disable: 4834)
// TODO: TBD: warning C4834: discarding return value of function with 'nodiscard' attribute...
std::array<std::size_t, N> it{ {(vectors.size(), 0u)...} };
#pragma warning (default: 4834)
do {
__apply_impl(cb, std::index_sequence_for<Tys...>(), it, std::tie(vectors...));
} while (__increase(sizes, it));
}
};
Remembered to include tuple
, vector
, as well as array
.
Simple to use:
CartesianProduct prod;
// ...
const auto product_ = prod(ints_, doubles_, bools_);
CHECK(std::tuple_size<decltype(product_ )::value_type>::value == 3);
Although not entirely positive what the warning is all about.
Slightly adapted, and with warnings disabled:
struct CartesianProduct {
template<typename... Tys>
std::vector<std::tuple<Tys...>> operator()(const std::vector<Tys>&... vectors) {
std::vector<std::tuple<Tys...>> results;
apply([&results](const auto&... args) {
results.emplace_back(args...); }, vectors...);
return results;
}
private:
template<std::size_t N>
bool __increase(const std::array<std::size_t, N>& sizes, std::array<std::size_t, N>& it) {
for (std::size_t i = 0; i < N; ++i) {
const std::size_t index = N - 1 - i;
++it[index];
if (it[index] >= sizes[index]) {
it[index] = 0;
}
else {
return true;
}
}
return false;
}
template<typename Cb, std::size_t... Is, std::size_t N, typename Tup>
void __apply_impl(Cb&& cb, std::index_sequence<Is...>
, const std::array<std::size_t, N>& it, const Tup& tup) {
cb(std::get<Is>(tup)[it[Is]]...);
}
template <typename Cb, typename... Tys>
void apply(Cb&& cb, const std::vector<Tys>&... vectors) {
constexpr std::size_t N = sizeof...(Tys);
std::array<std::size_t, N> sizes{ {vectors.size()...} };
#pragma warning (disable: 4834)
// TODO: TBD: warning C4834: discarding return value of function with 'nodiscard' attribute...
std::array<std::size_t, N> it{ {(vectors.size(), 0u)...} };
#pragma warning (default: 4834)
do {
__apply_impl(cb, std::index_sequence_for<Tys...>(), it, std::tie(vectors...));
} while (__increase(sizes, it));
}
};
Remembered to include tuple
, vector
, as well as array
.
Simple to use:
CartesianProduct prod;
// ...
const auto product_ = prod(ints_, doubles_, bools_);
CHECK(std::tuple_size<decltype(product_ )::value_type>::value == 3);
Although not entirely positive what the warning is all about.
answered Nov 9 at 0:55
mwpowellhtx
1038
1038
warning is for discarded valuevs.size()
(but used for variadic expansion). Once I think bout it,std::array<std::size_t, N> it{};
should be enough.
– Jarod42
Nov 9 at 8:36
add a comment |
warning is for discarded valuevs.size()
(but used for variadic expansion). Once I think bout it,std::array<std::size_t, N> it{};
should be enough.
– Jarod42
Nov 9 at 8:36
warning is for discarded value
vs.size()
(but used for variadic expansion). Once I think bout it, std::array<std::size_t, N> it{};
should be enough.– Jarod42
Nov 9 at 8:36
warning is for discarded value
vs.size()
(but used for variadic expansion). Once I think bout it, std::array<std::size_t, N> it{};
should be enough.– Jarod42
Nov 9 at 8:36
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53216947%2fhow-to-combine-two-or-more-vectors-of-arbitrary-types-in-c%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown