Keras Lambda layer error: did not return a tensor












0














I am using Lambda to create a self attention layer, but it raise an error that the output of lambda layer is not a tensor.



My code:



def selfAttention(x):
# input shape [None, n_window_sizes, n_hidden]
temp_transpose = K.transpose(x)
inputs_transpose = K.permute_dimensions(temp_transpose, [2, 0, 1]) # [None, n_hidden, n_window_sizes]
temp_weights = tf.matmul(x, inputs_transpose)
weights = tf.nn.softmax(temp_weights)
output = tf.matmul(weights, x)
return output


I call Lambda function as below:



attention_input = K.stack([lstm[0], lstm[1], lstm[2]], axis = 1)
l_attention = Lambda(selfAttention)(attention_input)









share|improve this question
























  • Can you post the error?
    – spicyramen
    Nov 12 '18 at 5:40










  • it says that the output of Lambda is type: <class 'tensorflow.python.keras._impl.keras.layers.core.lambda'>, and required input of next layer is tensor
    – Cindy
    Nov 12 '18 at 5:50












  • SOLVED!! Fixed with use lambda wrap for K.stack
    – Cindy
    Nov 12 '18 at 6:14
















0














I am using Lambda to create a self attention layer, but it raise an error that the output of lambda layer is not a tensor.



My code:



def selfAttention(x):
# input shape [None, n_window_sizes, n_hidden]
temp_transpose = K.transpose(x)
inputs_transpose = K.permute_dimensions(temp_transpose, [2, 0, 1]) # [None, n_hidden, n_window_sizes]
temp_weights = tf.matmul(x, inputs_transpose)
weights = tf.nn.softmax(temp_weights)
output = tf.matmul(weights, x)
return output


I call Lambda function as below:



attention_input = K.stack([lstm[0], lstm[1], lstm[2]], axis = 1)
l_attention = Lambda(selfAttention)(attention_input)









share|improve this question
























  • Can you post the error?
    – spicyramen
    Nov 12 '18 at 5:40










  • it says that the output of Lambda is type: <class 'tensorflow.python.keras._impl.keras.layers.core.lambda'>, and required input of next layer is tensor
    – Cindy
    Nov 12 '18 at 5:50












  • SOLVED!! Fixed with use lambda wrap for K.stack
    – Cindy
    Nov 12 '18 at 6:14














0












0








0







I am using Lambda to create a self attention layer, but it raise an error that the output of lambda layer is not a tensor.



My code:



def selfAttention(x):
# input shape [None, n_window_sizes, n_hidden]
temp_transpose = K.transpose(x)
inputs_transpose = K.permute_dimensions(temp_transpose, [2, 0, 1]) # [None, n_hidden, n_window_sizes]
temp_weights = tf.matmul(x, inputs_transpose)
weights = tf.nn.softmax(temp_weights)
output = tf.matmul(weights, x)
return output


I call Lambda function as below:



attention_input = K.stack([lstm[0], lstm[1], lstm[2]], axis = 1)
l_attention = Lambda(selfAttention)(attention_input)









share|improve this question















I am using Lambda to create a self attention layer, but it raise an error that the output of lambda layer is not a tensor.



My code:



def selfAttention(x):
# input shape [None, n_window_sizes, n_hidden]
temp_transpose = K.transpose(x)
inputs_transpose = K.permute_dimensions(temp_transpose, [2, 0, 1]) # [None, n_hidden, n_window_sizes]
temp_weights = tf.matmul(x, inputs_transpose)
weights = tf.nn.softmax(temp_weights)
output = tf.matmul(weights, x)
return output


I call Lambda function as below:



attention_input = K.stack([lstm[0], lstm[1], lstm[2]], axis = 1)
l_attention = Lambda(selfAttention)(attention_input)






python tensorflow keras lstm keras-layer






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Nov 12 '18 at 6:48









Milo Lu

1,58711327




1,58711327










asked Nov 12 '18 at 4:52









Cindy

84




84












  • Can you post the error?
    – spicyramen
    Nov 12 '18 at 5:40










  • it says that the output of Lambda is type: <class 'tensorflow.python.keras._impl.keras.layers.core.lambda'>, and required input of next layer is tensor
    – Cindy
    Nov 12 '18 at 5:50












  • SOLVED!! Fixed with use lambda wrap for K.stack
    – Cindy
    Nov 12 '18 at 6:14


















  • Can you post the error?
    – spicyramen
    Nov 12 '18 at 5:40










  • it says that the output of Lambda is type: <class 'tensorflow.python.keras._impl.keras.layers.core.lambda'>, and required input of next layer is tensor
    – Cindy
    Nov 12 '18 at 5:50












  • SOLVED!! Fixed with use lambda wrap for K.stack
    – Cindy
    Nov 12 '18 at 6:14
















Can you post the error?
– spicyramen
Nov 12 '18 at 5:40




Can you post the error?
– spicyramen
Nov 12 '18 at 5:40












it says that the output of Lambda is type: <class 'tensorflow.python.keras._impl.keras.layers.core.lambda'>, and required input of next layer is tensor
– Cindy
Nov 12 '18 at 5:50






it says that the output of Lambda is type: <class 'tensorflow.python.keras._impl.keras.layers.core.lambda'>, and required input of next layer is tensor
– Cindy
Nov 12 '18 at 5:50














SOLVED!! Fixed with use lambda wrap for K.stack
– Cindy
Nov 12 '18 at 6:14




SOLVED!! Fixed with use lambda wrap for K.stack
– Cindy
Nov 12 '18 at 6:14












1 Answer
1






active

oldest

votes


















0














Use lambda function to wrap K.stack as follow will solve the problem.



 attention_input = Lambda(lambda x: K.stack([x[0], x[1], x[2]], axis = 1))([lstm[0], lstm[1], lstm[2]])





share|improve this answer





















    Your Answer






    StackExchange.ifUsing("editor", function () {
    StackExchange.using("externalEditor", function () {
    StackExchange.using("snippets", function () {
    StackExchange.snippets.init();
    });
    });
    }, "code-snippets");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "1"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53256136%2fkeras-lambda-layer-error-did-not-return-a-tensor%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0














    Use lambda function to wrap K.stack as follow will solve the problem.



     attention_input = Lambda(lambda x: K.stack([x[0], x[1], x[2]], axis = 1))([lstm[0], lstm[1], lstm[2]])





    share|improve this answer


























      0














      Use lambda function to wrap K.stack as follow will solve the problem.



       attention_input = Lambda(lambda x: K.stack([x[0], x[1], x[2]], axis = 1))([lstm[0], lstm[1], lstm[2]])





      share|improve this answer
























        0












        0








        0






        Use lambda function to wrap K.stack as follow will solve the problem.



         attention_input = Lambda(lambda x: K.stack([x[0], x[1], x[2]], axis = 1))([lstm[0], lstm[1], lstm[2]])





        share|improve this answer












        Use lambda function to wrap K.stack as follow will solve the problem.



         attention_input = Lambda(lambda x: K.stack([x[0], x[1], x[2]], axis = 1))([lstm[0], lstm[1], lstm[2]])






        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered Nov 13 '18 at 5:40









        Cindy

        84




        84






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Stack Overflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53256136%2fkeras-lambda-layer-error-did-not-return-a-tensor%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            這個網誌中的熱門文章

            Xamarin.form Move up view when keyboard appear

            Post-Redirect-Get with Spring WebFlux and Thymeleaf

            Anylogic : not able to use stopDelay()