pysal spatial weight lag variable NAN
I was useing pysal.weights
to calculate the spatial lag variable('price') with Gaussian kernel weight , it succeeded in find all the closest kW.neighbors
but some rows did not get kW.weights
, thus not all of the rows got the lag variable(price).
None of the rows of the coordinates geometries or price columns are nan or zero. So I am not sure what went wrong.
error are as follows:
/Users/xxx/miniconda3/lib/python3.6/site-packages/libpysal/weights/distance.py:645: RuntimeWarning: invalid value encountered in true_divide
zi = np.array([dict(list(zip(ni, di)))[nid] for nid in nids]) / bw[i]
/Users/xxx/miniconda3/lib/python3.6/site-packages/libpysal/weights/weights.py:171: UserWarning: The weights matrix is not fully connected. There are 796 components
warnings.warn("The weights matrix is not fully connected. There are %d components" % self.n_components)
/Users/xxx/miniconda3/lib/python3.6/site-packages/libpysal/weights/weights.py:171: UserWarning: The weights matrix is not fully connected. There are 796 components
warnings.warn("The weights matrix is not fully connected. There are %d components" % self.n_components)
Here's the code:
lag_vars=['price']
kW = lp.weights.Kernel.from_dataframe(df.loc[:,lag_vars+['geometry']], fixed=False, function='gaussian', k=10)
kW = fill_diagonal(kW, 0)
kW.transform = 'r'
WX = lp.weights.lag_spatial(kW, df.loc[:,lag_vars])
WXtable = pd.DataFrame(WX, columns=['lag_{}'.format(name) for name in lag_vars])
fd_lag = pd.concat((df,WXtable),axis=1)
python geospatial spatial pysal
add a comment |
I was useing pysal.weights
to calculate the spatial lag variable('price') with Gaussian kernel weight , it succeeded in find all the closest kW.neighbors
but some rows did not get kW.weights
, thus not all of the rows got the lag variable(price).
None of the rows of the coordinates geometries or price columns are nan or zero. So I am not sure what went wrong.
error are as follows:
/Users/xxx/miniconda3/lib/python3.6/site-packages/libpysal/weights/distance.py:645: RuntimeWarning: invalid value encountered in true_divide
zi = np.array([dict(list(zip(ni, di)))[nid] for nid in nids]) / bw[i]
/Users/xxx/miniconda3/lib/python3.6/site-packages/libpysal/weights/weights.py:171: UserWarning: The weights matrix is not fully connected. There are 796 components
warnings.warn("The weights matrix is not fully connected. There are %d components" % self.n_components)
/Users/xxx/miniconda3/lib/python3.6/site-packages/libpysal/weights/weights.py:171: UserWarning: The weights matrix is not fully connected. There are 796 components
warnings.warn("The weights matrix is not fully connected. There are %d components" % self.n_components)
Here's the code:
lag_vars=['price']
kW = lp.weights.Kernel.from_dataframe(df.loc[:,lag_vars+['geometry']], fixed=False, function='gaussian', k=10)
kW = fill_diagonal(kW, 0)
kW.transform = 'r'
WX = lp.weights.lag_spatial(kW, df.loc[:,lag_vars])
WXtable = pd.DataFrame(WX, columns=['lag_{}'.format(name) for name in lag_vars])
fd_lag = pd.concat((df,WXtable),axis=1)
python geospatial spatial pysal
add a comment |
I was useing pysal.weights
to calculate the spatial lag variable('price') with Gaussian kernel weight , it succeeded in find all the closest kW.neighbors
but some rows did not get kW.weights
, thus not all of the rows got the lag variable(price).
None of the rows of the coordinates geometries or price columns are nan or zero. So I am not sure what went wrong.
error are as follows:
/Users/xxx/miniconda3/lib/python3.6/site-packages/libpysal/weights/distance.py:645: RuntimeWarning: invalid value encountered in true_divide
zi = np.array([dict(list(zip(ni, di)))[nid] for nid in nids]) / bw[i]
/Users/xxx/miniconda3/lib/python3.6/site-packages/libpysal/weights/weights.py:171: UserWarning: The weights matrix is not fully connected. There are 796 components
warnings.warn("The weights matrix is not fully connected. There are %d components" % self.n_components)
/Users/xxx/miniconda3/lib/python3.6/site-packages/libpysal/weights/weights.py:171: UserWarning: The weights matrix is not fully connected. There are 796 components
warnings.warn("The weights matrix is not fully connected. There are %d components" % self.n_components)
Here's the code:
lag_vars=['price']
kW = lp.weights.Kernel.from_dataframe(df.loc[:,lag_vars+['geometry']], fixed=False, function='gaussian', k=10)
kW = fill_diagonal(kW, 0)
kW.transform = 'r'
WX = lp.weights.lag_spatial(kW, df.loc[:,lag_vars])
WXtable = pd.DataFrame(WX, columns=['lag_{}'.format(name) for name in lag_vars])
fd_lag = pd.concat((df,WXtable),axis=1)
python geospatial spatial pysal
I was useing pysal.weights
to calculate the spatial lag variable('price') with Gaussian kernel weight , it succeeded in find all the closest kW.neighbors
but some rows did not get kW.weights
, thus not all of the rows got the lag variable(price).
None of the rows of the coordinates geometries or price columns are nan or zero. So I am not sure what went wrong.
error are as follows:
/Users/xxx/miniconda3/lib/python3.6/site-packages/libpysal/weights/distance.py:645: RuntimeWarning: invalid value encountered in true_divide
zi = np.array([dict(list(zip(ni, di)))[nid] for nid in nids]) / bw[i]
/Users/xxx/miniconda3/lib/python3.6/site-packages/libpysal/weights/weights.py:171: UserWarning: The weights matrix is not fully connected. There are 796 components
warnings.warn("The weights matrix is not fully connected. There are %d components" % self.n_components)
/Users/xxx/miniconda3/lib/python3.6/site-packages/libpysal/weights/weights.py:171: UserWarning: The weights matrix is not fully connected. There are 796 components
warnings.warn("The weights matrix is not fully connected. There are %d components" % self.n_components)
Here's the code:
lag_vars=['price']
kW = lp.weights.Kernel.from_dataframe(df.loc[:,lag_vars+['geometry']], fixed=False, function='gaussian', k=10)
kW = fill_diagonal(kW, 0)
kW.transform = 'r'
WX = lp.weights.lag_spatial(kW, df.loc[:,lag_vars])
WXtable = pd.DataFrame(WX, columns=['lag_{}'.format(name) for name in lag_vars])
fd_lag = pd.concat((df,WXtable),axis=1)
python geospatial spatial pysal
python geospatial spatial pysal
asked Nov 12 '18 at 4:48
Jimmy
3319
3319
add a comment |
add a comment |
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53256110%2fpysal-spatial-weight-lag-variable-nan%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53256110%2fpysal-spatial-weight-lag-variable-nan%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown