ValueError: Input 0 is incompatible with layer conv2d_1: expected ndim=4, found ndim=3












1














After inquiring into the questions already asked about this problem, I keep presenting it. Im trying to classify letters from A to D. All input images are 64x64 and graycolor.



The first layer of my CNN is:



model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape = input_shape, activation = 'relu'))


And input_shape it's coming from:



# Define the number of classes
num_classes = 4
labels_name={'A':0,'B':1,'C':2,'D':3}

img_data_list=
labels_list=

for dataset in data_dir_list:
img_list=os.listdir(data_path+'/'+ dataset)
print ('Loading the images of dataset-'+'{}n'.format(dataset))
label = labels_name[dataset]
for img in img_list:
input_img=cv2.imread(data_path + '/'+ dataset + '/'+ img )
input_img=cv2.cvtColor(input_img, cv2.COLOR_BGR2GRAY)
input_img_resize=cv2.resize(input_img,(128,128))
img_data_list.append(input_img_resize)
labels_list.append(label)

img_data = np.array(img_data_list)
img_data = img_data.astype('float32')
img_data /= 255
print (img_data.shape)

labels = np.array(labels_list)
print(np.unique(labels,return_counts=True))

#convert class labels to on-hot encoding
Y = np_utils.to_categorical(labels, num_classes)

#Shuffle the dataset
x,y = shuffle(img_data,Y, random_state=2)

# Split the dataset
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=2)

#Defining the model
input_shape=img_data[0].shape
print(input_shape)


Thanks,










share|improve this question






















  • What is the value of input_shape?
    – today
    Nov 11 at 18:58










  • input_shape=img_data[0].shape and img_data is coming from input_shape=img_data[0].shape
    – J. Dav
    Nov 11 at 20:40
















1














After inquiring into the questions already asked about this problem, I keep presenting it. Im trying to classify letters from A to D. All input images are 64x64 and graycolor.



The first layer of my CNN is:



model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape = input_shape, activation = 'relu'))


And input_shape it's coming from:



# Define the number of classes
num_classes = 4
labels_name={'A':0,'B':1,'C':2,'D':3}

img_data_list=
labels_list=

for dataset in data_dir_list:
img_list=os.listdir(data_path+'/'+ dataset)
print ('Loading the images of dataset-'+'{}n'.format(dataset))
label = labels_name[dataset]
for img in img_list:
input_img=cv2.imread(data_path + '/'+ dataset + '/'+ img )
input_img=cv2.cvtColor(input_img, cv2.COLOR_BGR2GRAY)
input_img_resize=cv2.resize(input_img,(128,128))
img_data_list.append(input_img_resize)
labels_list.append(label)

img_data = np.array(img_data_list)
img_data = img_data.astype('float32')
img_data /= 255
print (img_data.shape)

labels = np.array(labels_list)
print(np.unique(labels,return_counts=True))

#convert class labels to on-hot encoding
Y = np_utils.to_categorical(labels, num_classes)

#Shuffle the dataset
x,y = shuffle(img_data,Y, random_state=2)

# Split the dataset
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=2)

#Defining the model
input_shape=img_data[0].shape
print(input_shape)


Thanks,










share|improve this question






















  • What is the value of input_shape?
    – today
    Nov 11 at 18:58










  • input_shape=img_data[0].shape and img_data is coming from input_shape=img_data[0].shape
    – J. Dav
    Nov 11 at 20:40














1












1








1


1





After inquiring into the questions already asked about this problem, I keep presenting it. Im trying to classify letters from A to D. All input images are 64x64 and graycolor.



The first layer of my CNN is:



model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape = input_shape, activation = 'relu'))


And input_shape it's coming from:



# Define the number of classes
num_classes = 4
labels_name={'A':0,'B':1,'C':2,'D':3}

img_data_list=
labels_list=

for dataset in data_dir_list:
img_list=os.listdir(data_path+'/'+ dataset)
print ('Loading the images of dataset-'+'{}n'.format(dataset))
label = labels_name[dataset]
for img in img_list:
input_img=cv2.imread(data_path + '/'+ dataset + '/'+ img )
input_img=cv2.cvtColor(input_img, cv2.COLOR_BGR2GRAY)
input_img_resize=cv2.resize(input_img,(128,128))
img_data_list.append(input_img_resize)
labels_list.append(label)

img_data = np.array(img_data_list)
img_data = img_data.astype('float32')
img_data /= 255
print (img_data.shape)

labels = np.array(labels_list)
print(np.unique(labels,return_counts=True))

#convert class labels to on-hot encoding
Y = np_utils.to_categorical(labels, num_classes)

#Shuffle the dataset
x,y = shuffle(img_data,Y, random_state=2)

# Split the dataset
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=2)

#Defining the model
input_shape=img_data[0].shape
print(input_shape)


Thanks,










share|improve this question













After inquiring into the questions already asked about this problem, I keep presenting it. Im trying to classify letters from A to D. All input images are 64x64 and graycolor.



The first layer of my CNN is:



model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape = input_shape, activation = 'relu'))


And input_shape it's coming from:



# Define the number of classes
num_classes = 4
labels_name={'A':0,'B':1,'C':2,'D':3}

img_data_list=
labels_list=

for dataset in data_dir_list:
img_list=os.listdir(data_path+'/'+ dataset)
print ('Loading the images of dataset-'+'{}n'.format(dataset))
label = labels_name[dataset]
for img in img_list:
input_img=cv2.imread(data_path + '/'+ dataset + '/'+ img )
input_img=cv2.cvtColor(input_img, cv2.COLOR_BGR2GRAY)
input_img_resize=cv2.resize(input_img,(128,128))
img_data_list.append(input_img_resize)
labels_list.append(label)

img_data = np.array(img_data_list)
img_data = img_data.astype('float32')
img_data /= 255
print (img_data.shape)

labels = np.array(labels_list)
print(np.unique(labels,return_counts=True))

#convert class labels to on-hot encoding
Y = np_utils.to_categorical(labels, num_classes)

#Shuffle the dataset
x,y = shuffle(img_data,Y, random_state=2)

# Split the dataset
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=2)

#Defining the model
input_shape=img_data[0].shape
print(input_shape)


Thanks,







python tensorflow keras conv-neural-network






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked Nov 11 at 13:48









J. Dav

113




113












  • What is the value of input_shape?
    – today
    Nov 11 at 18:58










  • input_shape=img_data[0].shape and img_data is coming from input_shape=img_data[0].shape
    – J. Dav
    Nov 11 at 20:40


















  • What is the value of input_shape?
    – today
    Nov 11 at 18:58










  • input_shape=img_data[0].shape and img_data is coming from input_shape=img_data[0].shape
    – J. Dav
    Nov 11 at 20:40
















What is the value of input_shape?
– today
Nov 11 at 18:58




What is the value of input_shape?
– today
Nov 11 at 18:58












input_shape=img_data[0].shape and img_data is coming from input_shape=img_data[0].shape
– J. Dav
Nov 11 at 20:40




input_shape=img_data[0].shape and img_data is coming from input_shape=img_data[0].shape
– J. Dav
Nov 11 at 20:40












1 Answer
1






active

oldest

votes


















0














Conv2d expects input of shape (batchsize, w, h, filters).



You need to add a reshape to fit the data before the conv layer:



 model.add(Reshape((64, 64, 1)))


This will set your model dimensions to [None, 64,64,1] and should be fine for Conv2d.






share|improve this answer





















    Your Answer






    StackExchange.ifUsing("editor", function () {
    StackExchange.using("externalEditor", function () {
    StackExchange.using("snippets", function () {
    StackExchange.snippets.init();
    });
    });
    }, "code-snippets");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "1"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53249386%2fvalueerror-input-0-is-incompatible-with-layer-conv2d-1-expected-ndim-4-found%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0














    Conv2d expects input of shape (batchsize, w, h, filters).



    You need to add a reshape to fit the data before the conv layer:



     model.add(Reshape((64, 64, 1)))


    This will set your model dimensions to [None, 64,64,1] and should be fine for Conv2d.






    share|improve this answer


























      0














      Conv2d expects input of shape (batchsize, w, h, filters).



      You need to add a reshape to fit the data before the conv layer:



       model.add(Reshape((64, 64, 1)))


      This will set your model dimensions to [None, 64,64,1] and should be fine for Conv2d.






      share|improve this answer
























        0












        0








        0






        Conv2d expects input of shape (batchsize, w, h, filters).



        You need to add a reshape to fit the data before the conv layer:



         model.add(Reshape((64, 64, 1)))


        This will set your model dimensions to [None, 64,64,1] and should be fine for Conv2d.






        share|improve this answer












        Conv2d expects input of shape (batchsize, w, h, filters).



        You need to add a reshape to fit the data before the conv layer:



         model.add(Reshape((64, 64, 1)))


        This will set your model dimensions to [None, 64,64,1] and should be fine for Conv2d.







        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered Nov 11 at 20:14









        Dinari

        1,615422




        1,615422






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Stack Overflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53249386%2fvalueerror-input-0-is-incompatible-with-layer-conv2d-1-expected-ndim-4-found%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            這個網誌中的熱門文章

            Xamarin.form Move up view when keyboard appear

            Post-Redirect-Get with Spring WebFlux and Thymeleaf

            Anylogic : not able to use stopDelay()