Fill blank cells with data above it





.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ height:90px;width:728px;box-sizing:border-box;
}







2















I have data which looks like:



| ID       | Name      | Inv | Date       | Value | PO  | Type  | Rate  | Tax   | Integ |
|----------|-----------|-----|------------|-------|-----|-------|-------|-------|-------|
| DEADBEEF | CHEMICALS | 321 | 19-11-2017 | 14288 | UK | State | 0.00% | 3000 | 0 |
| | | | | 0 | 0 | 0 | 5.00% | 10750 | 537.5 |


The software which generated this left banks for repeated data. The blank cells seen here should have the data seen in the cell above it.



The above data must ideally be like:



| ID       | Name      | Inv | Date       | Value | PO  | Type  | Rate  | Tax   | Integ |
|----------|-----------|-----|------------|-------|-----|-------|-------|-------|-------|
| DEADBEEF | CHEMICALS | 321 | 19-11-2017 | 14288 | UK | State | 0.00% | 3000 | 0 |
| DEADBEEF | CHEMICALS | 321 | 19-11-2017 | 14288 | UK | State | 5.00% | 10750 | 537.5 |


As you can see the columns 1-7 have been populated with the data seen above it. How do I do this in pandas.



I need to:




  • Identify blanks or NULLs in "ID" (column 1)

  • Populate that row: column 1 ot 7 with the data above that row.










share|improve this question





























    2















    I have data which looks like:



    | ID       | Name      | Inv | Date       | Value | PO  | Type  | Rate  | Tax   | Integ |
    |----------|-----------|-----|------------|-------|-----|-------|-------|-------|-------|
    | DEADBEEF | CHEMICALS | 321 | 19-11-2017 | 14288 | UK | State | 0.00% | 3000 | 0 |
    | | | | | 0 | 0 | 0 | 5.00% | 10750 | 537.5 |


    The software which generated this left banks for repeated data. The blank cells seen here should have the data seen in the cell above it.



    The above data must ideally be like:



    | ID       | Name      | Inv | Date       | Value | PO  | Type  | Rate  | Tax   | Integ |
    |----------|-----------|-----|------------|-------|-----|-------|-------|-------|-------|
    | DEADBEEF | CHEMICALS | 321 | 19-11-2017 | 14288 | UK | State | 0.00% | 3000 | 0 |
    | DEADBEEF | CHEMICALS | 321 | 19-11-2017 | 14288 | UK | State | 5.00% | 10750 | 537.5 |


    As you can see the columns 1-7 have been populated with the data seen above it. How do I do this in pandas.



    I need to:




    • Identify blanks or NULLs in "ID" (column 1)

    • Populate that row: column 1 ot 7 with the data above that row.










    share|improve this question

























      2












      2








      2








      I have data which looks like:



      | ID       | Name      | Inv | Date       | Value | PO  | Type  | Rate  | Tax   | Integ |
      |----------|-----------|-----|------------|-------|-----|-------|-------|-------|-------|
      | DEADBEEF | CHEMICALS | 321 | 19-11-2017 | 14288 | UK | State | 0.00% | 3000 | 0 |
      | | | | | 0 | 0 | 0 | 5.00% | 10750 | 537.5 |


      The software which generated this left banks for repeated data. The blank cells seen here should have the data seen in the cell above it.



      The above data must ideally be like:



      | ID       | Name      | Inv | Date       | Value | PO  | Type  | Rate  | Tax   | Integ |
      |----------|-----------|-----|------------|-------|-----|-------|-------|-------|-------|
      | DEADBEEF | CHEMICALS | 321 | 19-11-2017 | 14288 | UK | State | 0.00% | 3000 | 0 |
      | DEADBEEF | CHEMICALS | 321 | 19-11-2017 | 14288 | UK | State | 5.00% | 10750 | 537.5 |


      As you can see the columns 1-7 have been populated with the data seen above it. How do I do this in pandas.



      I need to:




      • Identify blanks or NULLs in "ID" (column 1)

      • Populate that row: column 1 ot 7 with the data above that row.










      share|improve this question














      I have data which looks like:



      | ID       | Name      | Inv | Date       | Value | PO  | Type  | Rate  | Tax   | Integ |
      |----------|-----------|-----|------------|-------|-----|-------|-------|-------|-------|
      | DEADBEEF | CHEMICALS | 321 | 19-11-2017 | 14288 | UK | State | 0.00% | 3000 | 0 |
      | | | | | 0 | 0 | 0 | 5.00% | 10750 | 537.5 |


      The software which generated this left banks for repeated data. The blank cells seen here should have the data seen in the cell above it.



      The above data must ideally be like:



      | ID       | Name      | Inv | Date       | Value | PO  | Type  | Rate  | Tax   | Integ |
      |----------|-----------|-----|------------|-------|-----|-------|-------|-------|-------|
      | DEADBEEF | CHEMICALS | 321 | 19-11-2017 | 14288 | UK | State | 0.00% | 3000 | 0 |
      | DEADBEEF | CHEMICALS | 321 | 19-11-2017 | 14288 | UK | State | 5.00% | 10750 | 537.5 |


      As you can see the columns 1-7 have been populated with the data seen above it. How do I do this in pandas.



      I need to:




      • Identify blanks or NULLs in "ID" (column 1)

      • Populate that row: column 1 ot 7 with the data above that row.







      python pandas






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Nov 25 '18 at 7:05









      clmnoclmno

      779416




      779416
























          1 Answer
          1






          active

          oldest

          votes


















          2














          Use mask with forward filling missing values:



          df = df.mask(df == 0).ffill()


          Or:



          df = df.mask(df.isin(['', 0])).ffill()


          If want also change first row filled by missing values to 0 only for numeric columns:



          num = df.select_dtypes(np.number).columns
          d = dict.fromkeys(num, 0)
          print (d)
          {'Inv': 0, 'Value': 0, 'Tax': 0, 'Integ': 0}

          df = df.mask(df == 0).ffill().fillna(d)
          print (df)
          ID Name Inv Date Value PO Type Rate Tax
          0 DEADBEEF CHEMICALS 321.0 19-11-2017 14288.0 UK State 0.00% 3000
          1 DEADBEEF CHEMICALS 321.0 19-11-2017 14288.0 0 0 5.00% 10750

          Integ
          0 0.0
          1 537.5





          share|improve this answer


























            Your Answer






            StackExchange.ifUsing("editor", function () {
            StackExchange.using("externalEditor", function () {
            StackExchange.using("snippets", function () {
            StackExchange.snippets.init();
            });
            });
            }, "code-snippets");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "1"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53465392%2ffill-blank-cells-with-data-above-it%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2














            Use mask with forward filling missing values:



            df = df.mask(df == 0).ffill()


            Or:



            df = df.mask(df.isin(['', 0])).ffill()


            If want also change first row filled by missing values to 0 only for numeric columns:



            num = df.select_dtypes(np.number).columns
            d = dict.fromkeys(num, 0)
            print (d)
            {'Inv': 0, 'Value': 0, 'Tax': 0, 'Integ': 0}

            df = df.mask(df == 0).ffill().fillna(d)
            print (df)
            ID Name Inv Date Value PO Type Rate Tax
            0 DEADBEEF CHEMICALS 321.0 19-11-2017 14288.0 UK State 0.00% 3000
            1 DEADBEEF CHEMICALS 321.0 19-11-2017 14288.0 0 0 5.00% 10750

            Integ
            0 0.0
            1 537.5





            share|improve this answer






























              2














              Use mask with forward filling missing values:



              df = df.mask(df == 0).ffill()


              Or:



              df = df.mask(df.isin(['', 0])).ffill()


              If want also change first row filled by missing values to 0 only for numeric columns:



              num = df.select_dtypes(np.number).columns
              d = dict.fromkeys(num, 0)
              print (d)
              {'Inv': 0, 'Value': 0, 'Tax': 0, 'Integ': 0}

              df = df.mask(df == 0).ffill().fillna(d)
              print (df)
              ID Name Inv Date Value PO Type Rate Tax
              0 DEADBEEF CHEMICALS 321.0 19-11-2017 14288.0 UK State 0.00% 3000
              1 DEADBEEF CHEMICALS 321.0 19-11-2017 14288.0 0 0 5.00% 10750

              Integ
              0 0.0
              1 537.5





              share|improve this answer




























                2












                2








                2







                Use mask with forward filling missing values:



                df = df.mask(df == 0).ffill()


                Or:



                df = df.mask(df.isin(['', 0])).ffill()


                If want also change first row filled by missing values to 0 only for numeric columns:



                num = df.select_dtypes(np.number).columns
                d = dict.fromkeys(num, 0)
                print (d)
                {'Inv': 0, 'Value': 0, 'Tax': 0, 'Integ': 0}

                df = df.mask(df == 0).ffill().fillna(d)
                print (df)
                ID Name Inv Date Value PO Type Rate Tax
                0 DEADBEEF CHEMICALS 321.0 19-11-2017 14288.0 UK State 0.00% 3000
                1 DEADBEEF CHEMICALS 321.0 19-11-2017 14288.0 0 0 5.00% 10750

                Integ
                0 0.0
                1 537.5





                share|improve this answer















                Use mask with forward filling missing values:



                df = df.mask(df == 0).ffill()


                Or:



                df = df.mask(df.isin(['', 0])).ffill()


                If want also change first row filled by missing values to 0 only for numeric columns:



                num = df.select_dtypes(np.number).columns
                d = dict.fromkeys(num, 0)
                print (d)
                {'Inv': 0, 'Value': 0, 'Tax': 0, 'Integ': 0}

                df = df.mask(df == 0).ffill().fillna(d)
                print (df)
                ID Name Inv Date Value PO Type Rate Tax
                0 DEADBEEF CHEMICALS 321.0 19-11-2017 14288.0 UK State 0.00% 3000
                1 DEADBEEF CHEMICALS 321.0 19-11-2017 14288.0 0 0 5.00% 10750

                Integ
                0 0.0
                1 537.5






                share|improve this answer














                share|improve this answer



                share|improve this answer








                edited Nov 25 '18 at 7:15

























                answered Nov 25 '18 at 7:06









                jezraeljezrael

                363k26330412




                363k26330412
































                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Stack Overflow!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53465392%2ffill-blank-cells-with-data-above-it%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    這個網誌中的熱門文章

                    Xamarin.form Move up view when keyboard appear

                    Post-Redirect-Get with Spring WebFlux and Thymeleaf

                    Anylogic : not able to use stopDelay()