pandas to_sql, only update new rows to mysql db (primary key & duplicate)
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ height:90px;width:728px;box-sizing:border-box;
}
I am having problems updating pd to mysql db
for stock_code in cleaned:
url = 'https://www.hkex.com.hk/chi/sorc/options/statistics_hv_iv_c.aspx?action=csv&type=3&ucode={0}'.format(stock_code)
df = pd.read_csv(url,index_col='交易日', header=0, skiprows=2)
df.index.names = ['Trade Date']
df.index = pd.to_datetime(df.index, dayfirst=True)
df.insert(loc=0, column ='Stock Code', value=stock_code)
df.columns = ['Stock Code', 'Implied IV (%)','HV10 (%)','HV30 (%)','HV60 (%)','HV90 (%)']
df.to_sql(con=database_connection, name='table', if_exists='append')
database_connection.close()
The url will provide data for nearest 3 months : ie. 2018-08-25 to 2018-11-25,
after today the url will give data 2018-08-26 to 2018-11-26, what I want is to save all the data in db without duplication.
I set 'Trade Date' & 'Stock Code' as primary key, but it yields error :
(mysql.connector.errors.IntegrityError) 1062 (23000): Duplicate entry '2018-11-23-00001' for key 'PRIMARY' [SQL
How can I skip the duplicate entry and only update new rows? Thanks a lot!
python mysql pandas
add a comment |
I am having problems updating pd to mysql db
for stock_code in cleaned:
url = 'https://www.hkex.com.hk/chi/sorc/options/statistics_hv_iv_c.aspx?action=csv&type=3&ucode={0}'.format(stock_code)
df = pd.read_csv(url,index_col='交易日', header=0, skiprows=2)
df.index.names = ['Trade Date']
df.index = pd.to_datetime(df.index, dayfirst=True)
df.insert(loc=0, column ='Stock Code', value=stock_code)
df.columns = ['Stock Code', 'Implied IV (%)','HV10 (%)','HV30 (%)','HV60 (%)','HV90 (%)']
df.to_sql(con=database_connection, name='table', if_exists='append')
database_connection.close()
The url will provide data for nearest 3 months : ie. 2018-08-25 to 2018-11-25,
after today the url will give data 2018-08-26 to 2018-11-26, what I want is to save all the data in db without duplication.
I set 'Trade Date' & 'Stock Code' as primary key, but it yields error :
(mysql.connector.errors.IntegrityError) 1062 (23000): Duplicate entry '2018-11-23-00001' for key 'PRIMARY' [SQL
How can I skip the duplicate entry and only update new rows? Thanks a lot!
python mysql pandas
set 'Stock Code' + 'Trade Date' as primary key (in order)
– RomanPerekhrest
Nov 25 '18 at 7:05
Sorry, can u elaborate a bit? Trade Date is index & Stock Code is a column
– Anony Yam
Nov 25 '18 at 10:02
add a comment |
I am having problems updating pd to mysql db
for stock_code in cleaned:
url = 'https://www.hkex.com.hk/chi/sorc/options/statistics_hv_iv_c.aspx?action=csv&type=3&ucode={0}'.format(stock_code)
df = pd.read_csv(url,index_col='交易日', header=0, skiprows=2)
df.index.names = ['Trade Date']
df.index = pd.to_datetime(df.index, dayfirst=True)
df.insert(loc=0, column ='Stock Code', value=stock_code)
df.columns = ['Stock Code', 'Implied IV (%)','HV10 (%)','HV30 (%)','HV60 (%)','HV90 (%)']
df.to_sql(con=database_connection, name='table', if_exists='append')
database_connection.close()
The url will provide data for nearest 3 months : ie. 2018-08-25 to 2018-11-25,
after today the url will give data 2018-08-26 to 2018-11-26, what I want is to save all the data in db without duplication.
I set 'Trade Date' & 'Stock Code' as primary key, but it yields error :
(mysql.connector.errors.IntegrityError) 1062 (23000): Duplicate entry '2018-11-23-00001' for key 'PRIMARY' [SQL
How can I skip the duplicate entry and only update new rows? Thanks a lot!
python mysql pandas
I am having problems updating pd to mysql db
for stock_code in cleaned:
url = 'https://www.hkex.com.hk/chi/sorc/options/statistics_hv_iv_c.aspx?action=csv&type=3&ucode={0}'.format(stock_code)
df = pd.read_csv(url,index_col='交易日', header=0, skiprows=2)
df.index.names = ['Trade Date']
df.index = pd.to_datetime(df.index, dayfirst=True)
df.insert(loc=0, column ='Stock Code', value=stock_code)
df.columns = ['Stock Code', 'Implied IV (%)','HV10 (%)','HV30 (%)','HV60 (%)','HV90 (%)']
df.to_sql(con=database_connection, name='table', if_exists='append')
database_connection.close()
The url will provide data for nearest 3 months : ie. 2018-08-25 to 2018-11-25,
after today the url will give data 2018-08-26 to 2018-11-26, what I want is to save all the data in db without duplication.
I set 'Trade Date' & 'Stock Code' as primary key, but it yields error :
(mysql.connector.errors.IntegrityError) 1062 (23000): Duplicate entry '2018-11-23-00001' for key 'PRIMARY' [SQL
How can I skip the duplicate entry and only update new rows? Thanks a lot!
python mysql pandas
python mysql pandas
asked Nov 25 '18 at 7:01
Anony YamAnony Yam
103
103
set 'Stock Code' + 'Trade Date' as primary key (in order)
– RomanPerekhrest
Nov 25 '18 at 7:05
Sorry, can u elaborate a bit? Trade Date is index & Stock Code is a column
– Anony Yam
Nov 25 '18 at 10:02
add a comment |
set 'Stock Code' + 'Trade Date' as primary key (in order)
– RomanPerekhrest
Nov 25 '18 at 7:05
Sorry, can u elaborate a bit? Trade Date is index & Stock Code is a column
– Anony Yam
Nov 25 '18 at 10:02
set 'Stock Code' + 'Trade Date' as primary key (in order)
– RomanPerekhrest
Nov 25 '18 at 7:05
set 'Stock Code' + 'Trade Date' as primary key (in order)
– RomanPerekhrest
Nov 25 '18 at 7:05
Sorry, can u elaborate a bit? Trade Date is index & Stock Code is a column
– Anony Yam
Nov 25 '18 at 10:02
Sorry, can u elaborate a bit? Trade Date is index & Stock Code is a column
– Anony Yam
Nov 25 '18 at 10:02
add a comment |
1 Answer
1
active
oldest
votes
As far as I know it does not have a solution for bulk insert (to_sql). You can try this:
for i in range(len(df)):
try:
df.iloc[i:i+1].to_sql(name='table', if_exists='append', con=database_connection)
except IntegrityError:
pass
Thanks for the suggestion, but it created another error : IntegrityError: (mysql.connector.errors.IntegrityError) During handling of the above exception, another exception occurred: NameError
– Anony Yam
Dec 2 '18 at 3:44
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53465370%2fpandas-to-sql-only-update-new-rows-to-mysql-db-primary-key-duplicate%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
As far as I know it does not have a solution for bulk insert (to_sql). You can try this:
for i in range(len(df)):
try:
df.iloc[i:i+1].to_sql(name='table', if_exists='append', con=database_connection)
except IntegrityError:
pass
Thanks for the suggestion, but it created another error : IntegrityError: (mysql.connector.errors.IntegrityError) During handling of the above exception, another exception occurred: NameError
– Anony Yam
Dec 2 '18 at 3:44
add a comment |
As far as I know it does not have a solution for bulk insert (to_sql). You can try this:
for i in range(len(df)):
try:
df.iloc[i:i+1].to_sql(name='table', if_exists='append', con=database_connection)
except IntegrityError:
pass
Thanks for the suggestion, but it created another error : IntegrityError: (mysql.connector.errors.IntegrityError) During handling of the above exception, another exception occurred: NameError
– Anony Yam
Dec 2 '18 at 3:44
add a comment |
As far as I know it does not have a solution for bulk insert (to_sql). You can try this:
for i in range(len(df)):
try:
df.iloc[i:i+1].to_sql(name='table', if_exists='append', con=database_connection)
except IntegrityError:
pass
As far as I know it does not have a solution for bulk insert (to_sql). You can try this:
for i in range(len(df)):
try:
df.iloc[i:i+1].to_sql(name='table', if_exists='append', con=database_connection)
except IntegrityError:
pass
answered Nov 25 '18 at 12:17
E. ZeytinciE. Zeytinci
10317
10317
Thanks for the suggestion, but it created another error : IntegrityError: (mysql.connector.errors.IntegrityError) During handling of the above exception, another exception occurred: NameError
– Anony Yam
Dec 2 '18 at 3:44
add a comment |
Thanks for the suggestion, but it created another error : IntegrityError: (mysql.connector.errors.IntegrityError) During handling of the above exception, another exception occurred: NameError
– Anony Yam
Dec 2 '18 at 3:44
Thanks for the suggestion, but it created another error : IntegrityError: (mysql.connector.errors.IntegrityError) During handling of the above exception, another exception occurred: NameError
– Anony Yam
Dec 2 '18 at 3:44
Thanks for the suggestion, but it created another error : IntegrityError: (mysql.connector.errors.IntegrityError) During handling of the above exception, another exception occurred: NameError
– Anony Yam
Dec 2 '18 at 3:44
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53465370%2fpandas-to-sql-only-update-new-rows-to-mysql-db-primary-key-duplicate%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
set 'Stock Code' + 'Trade Date' as primary key (in order)
– RomanPerekhrest
Nov 25 '18 at 7:05
Sorry, can u elaborate a bit? Trade Date is index & Stock Code is a column
– Anony Yam
Nov 25 '18 at 10:02