Multi class classification cross_val_score for precision and recall giving me same result











up vote
0
down vote

favorite












In my Y values , I have 4 classes. So , clearly this is a multiclass classification problem .



I am using MultinomialNB as a model. And I am doing 10-fold cross validation , but , I am getting same value for Precision , Recall and F1 .



Here is my code :



from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from sklearn.naive_bayes import MultinomialNB
from sklearn.multiclass import OneVsRestClassifier
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
from sklearn.preprocessing import LabelEncoder

scaler = MinMaxScaler()
X_train, X_test, y_train, y_test = train_test_split(yelp_joined_data, Y_label_encoded)


X_train=scaler.fit_transform(X_train)
X_test = scaler.fit_transform(X_test)

# fix random seed
seed = 7
numpy.random.seed(seed)

kfold = KFold(n_splits=10, shuffle=True, random_state=seed)

clf = OneVsRestClassifier(MultinomialNB(alpha=0.01))

prec_res_test=cross_val_score(clf, X_train, y_train.values.ravel(), cv=kfold, n_jobs=1,scoring='precision_micro')
prec_res_test.mean() ## value coming as 0.5090949570838452

recall_res_test=cross_val_score(clf, X_train, y_train.values.ravel(), cv=kfold, n_jobs=1,scoring='recall_micro')
recall_res_test.mean() # value coming as 0.5090949570838452

rf1_res_test=cross_val_score(clf, X_train, y_train.values.ravel(), cv=kfold, n_jobs=1,scoring='f1_micro')
rf1_res_test.mean() # value coming as 0.5090949570838452


I can not use usual precision here as scoring parameter , since this is a multiclass problem.



Can anyone please help me where I am doing wrong ?










share|improve this question


























    up vote
    0
    down vote

    favorite












    In my Y values , I have 4 classes. So , clearly this is a multiclass classification problem .



    I am using MultinomialNB as a model. And I am doing 10-fold cross validation , but , I am getting same value for Precision , Recall and F1 .



    Here is my code :



    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import MinMaxScaler
    from sklearn.naive_bayes import MultinomialNB
    from sklearn.multiclass import OneVsRestClassifier
    from sklearn.model_selection import cross_val_score
    from sklearn.model_selection import KFold
    from sklearn.preprocessing import LabelEncoder

    scaler = MinMaxScaler()
    X_train, X_test, y_train, y_test = train_test_split(yelp_joined_data, Y_label_encoded)


    X_train=scaler.fit_transform(X_train)
    X_test = scaler.fit_transform(X_test)

    # fix random seed
    seed = 7
    numpy.random.seed(seed)

    kfold = KFold(n_splits=10, shuffle=True, random_state=seed)

    clf = OneVsRestClassifier(MultinomialNB(alpha=0.01))

    prec_res_test=cross_val_score(clf, X_train, y_train.values.ravel(), cv=kfold, n_jobs=1,scoring='precision_micro')
    prec_res_test.mean() ## value coming as 0.5090949570838452

    recall_res_test=cross_val_score(clf, X_train, y_train.values.ravel(), cv=kfold, n_jobs=1,scoring='recall_micro')
    recall_res_test.mean() # value coming as 0.5090949570838452

    rf1_res_test=cross_val_score(clf, X_train, y_train.values.ravel(), cv=kfold, n_jobs=1,scoring='f1_micro')
    rf1_res_test.mean() # value coming as 0.5090949570838452


    I can not use usual precision here as scoring parameter , since this is a multiclass problem.



    Can anyone please help me where I am doing wrong ?










    share|improve this question
























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      In my Y values , I have 4 classes. So , clearly this is a multiclass classification problem .



      I am using MultinomialNB as a model. And I am doing 10-fold cross validation , but , I am getting same value for Precision , Recall and F1 .



      Here is my code :



      from sklearn.model_selection import train_test_split
      from sklearn.preprocessing import MinMaxScaler
      from sklearn.naive_bayes import MultinomialNB
      from sklearn.multiclass import OneVsRestClassifier
      from sklearn.model_selection import cross_val_score
      from sklearn.model_selection import KFold
      from sklearn.preprocessing import LabelEncoder

      scaler = MinMaxScaler()
      X_train, X_test, y_train, y_test = train_test_split(yelp_joined_data, Y_label_encoded)


      X_train=scaler.fit_transform(X_train)
      X_test = scaler.fit_transform(X_test)

      # fix random seed
      seed = 7
      numpy.random.seed(seed)

      kfold = KFold(n_splits=10, shuffle=True, random_state=seed)

      clf = OneVsRestClassifier(MultinomialNB(alpha=0.01))

      prec_res_test=cross_val_score(clf, X_train, y_train.values.ravel(), cv=kfold, n_jobs=1,scoring='precision_micro')
      prec_res_test.mean() ## value coming as 0.5090949570838452

      recall_res_test=cross_val_score(clf, X_train, y_train.values.ravel(), cv=kfold, n_jobs=1,scoring='recall_micro')
      recall_res_test.mean() # value coming as 0.5090949570838452

      rf1_res_test=cross_val_score(clf, X_train, y_train.values.ravel(), cv=kfold, n_jobs=1,scoring='f1_micro')
      rf1_res_test.mean() # value coming as 0.5090949570838452


      I can not use usual precision here as scoring parameter , since this is a multiclass problem.



      Can anyone please help me where I am doing wrong ?










      share|improve this question













      In my Y values , I have 4 classes. So , clearly this is a multiclass classification problem .



      I am using MultinomialNB as a model. And I am doing 10-fold cross validation , but , I am getting same value for Precision , Recall and F1 .



      Here is my code :



      from sklearn.model_selection import train_test_split
      from sklearn.preprocessing import MinMaxScaler
      from sklearn.naive_bayes import MultinomialNB
      from sklearn.multiclass import OneVsRestClassifier
      from sklearn.model_selection import cross_val_score
      from sklearn.model_selection import KFold
      from sklearn.preprocessing import LabelEncoder

      scaler = MinMaxScaler()
      X_train, X_test, y_train, y_test = train_test_split(yelp_joined_data, Y_label_encoded)


      X_train=scaler.fit_transform(X_train)
      X_test = scaler.fit_transform(X_test)

      # fix random seed
      seed = 7
      numpy.random.seed(seed)

      kfold = KFold(n_splits=10, shuffle=True, random_state=seed)

      clf = OneVsRestClassifier(MultinomialNB(alpha=0.01))

      prec_res_test=cross_val_score(clf, X_train, y_train.values.ravel(), cv=kfold, n_jobs=1,scoring='precision_micro')
      prec_res_test.mean() ## value coming as 0.5090949570838452

      recall_res_test=cross_val_score(clf, X_train, y_train.values.ravel(), cv=kfold, n_jobs=1,scoring='recall_micro')
      recall_res_test.mean() # value coming as 0.5090949570838452

      rf1_res_test=cross_val_score(clf, X_train, y_train.values.ravel(), cv=kfold, n_jobs=1,scoring='f1_micro')
      rf1_res_test.mean() # value coming as 0.5090949570838452


      I can not use usual precision here as scoring parameter , since this is a multiclass problem.



      Can anyone please help me where I am doing wrong ?







      python machine-learning scikit-learn neural-network multiclass-classification






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Nov 9 at 16:02









      DukeLover

      111214




      111214





























          active

          oldest

          votes











          Your Answer






          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "1"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53229257%2fmulti-class-classification-cross-val-score-for-precision-and-recall-giving-me-sa%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown






























          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53229257%2fmulti-class-classification-cross-val-score-for-precision-and-recall-giving-me-sa%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          這個網誌中的熱門文章

          Xamarin.form Move up view when keyboard appear

          Post-Redirect-Get with Spring WebFlux and Thymeleaf

          Anylogic : not able to use stopDelay()