Coherence length
In physics, coherence length is the propagation distance over which a coherent wave (e.g. an electromagnetic wave) maintains a specified degree of coherence. Wave interference is strong when the paths taken by all of the interfering waves differ by less than the coherence length. A wave with a longer coherence length is closer to a perfect sinusoidal wave. Coherence length is important in holography and telecommunications engineering.
This article focuses on the coherence of classical electromagnetic fields. In quantum mechanics, there is a mathematically analogous concept of the quantum coherence length of a wave function.
Contents
1 Formulas
2 Lasers
3 Other light sources
4 See also
5 References
Formulas
In radio-band systems, the coherence length is approximated by
- L=cnΔf=λ2nΔλ,{displaystyle L={c over n,Delta f}={lambda ^{2} over nDelta lambda },}
where c{displaystyle c} is the speed of light in a vacuum, n{displaystyle n} is the refractive index of the medium, and Δf{displaystyle Delta f} is the bandwidth of the source or λ{displaystyle lambda } is the signal wavelength and Δλ{displaystyle Delta lambda } is the width of the range of wavelengths in the signal.
In optical communications, assuming that the source has a Gaussian emission spectrum, the coherence length L{displaystyle L} is given by [1]
- L=2ln2πλ2nΔλ,{displaystyle L={sqrt {2ln 2 over pi }}{lambda ^{2} over nDelta lambda },}
where λ{displaystyle lambda } is the central wavelength of the source, n{displaystyle n} is the refractive index of the medium, and Δλ{displaystyle Delta lambda } is the (FWHM) spectral width of the source. If the source has a Gaussian spectrum with FWHM spectral width Δλ{displaystyle Delta lambda }, then a path offset of ±L{displaystyle L} will reduce the fringe visibility to 50%.
Coherence length is usually applied to the optical regime.
The expression above is a frequently used approximation. Due to ambiguities in the definition of spectral width of a source, however, the following definition of coherence length has been suggested:
The coherence length can be measured using a Michelson interferometer and is the optical path length difference of a self-interfering laser beam which corresponds to a 1/e=37%{displaystyle 1/e=37%} fringe visibility,[2] where the fringe visibility is defined as
- V=Imax−IminImax+Imin,{displaystyle V={I_{max }-I_{min } over I_{max }+I_{min }},,}
where I{displaystyle I} is the fringe intensity.
In long-distance transmission systems, the coherence length may be reduced by propagation factors such as dispersion, scattering, and diffraction.
Lasers
Multimode helium–neon lasers have a typical coherence length of 20 cm, while the coherence length of single-mode lasers can exceed 100 m. Semiconductor lasers reach some 100 m, but small, inexpensive semiconductor lasers have shorter lengths, with one source[3] claiming 20 cm. Singlemode fiber lasers with linewidths of a few kHz can have coherence lengths exceeding 100 km. Similar coherence lengths can be reached with optical frequency combs due to the narrow linewidth of each tooth. Non-zero visibility is present only for short intervals of pulses repeated after cavity length distances up to this long coherence length.
Other light sources
The coherence length of a mercury-vapor lamp is 0.03 cm.[4]
See also
- Coherence time
- Superconducting coherence length
- Spatial coherence
References
^ Akcay, C.; Parrein, P.; Rolland, J.P. (2002). "Estimation of longitudinal resolution in optical coherence imaging". Applied Optics. 41 (25): 5256–5262.equation 9
.mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}
^ Ackermann, Gerhard K. (2007). Holography: A Practical Approach. Wiley-VCH. ISBN 3-527-40663-8.
^ "Sam's Laser FAQ - Diode Lasers". www.repairfaq.org. Retrieved 2017-02-06.
^ Hecht, Eugene (2002). Optics (4th ed.). San Francisco ; Montreal: Pearson/Addison-Wesley. ISBN 978-0805385663.
This article incorporates public domain material from the General Services Administration document "Federal Standard 1037C" (in support of MIL-STD-188).