Square-integrable function




In mathematics, a square-integrable function, also called a quadratically integrable function, is a real- or complex-valued measurable function for which the integral of the square of the absolute value is finite. Thus, square-interability on the real line (−,+∞){displaystyle (-infty ,+infty )}(-infty ,+infty ) is defined as follows.



f:R↦C square integrable⟺|f(x)|2dx<∞{displaystyle f:mathbb {R} mapsto mathbb {C} {text{ square integrable}}quad iff quad int _{-infty }^{infty }|f(x)|^{2},mathrm {d} x<infty }{displaystyle f:mathbb {R} mapsto mathbb {C} {text{ square integrable}}quad iff quad int _{-infty }^{infty }|f(x)|^{2},mathrm {d} x<infty }



One may also speak of quadratic integrability over bounded intervals such as [a,b]{displaystyle [a,b]}[a,b] for a≤b{displaystyle aleq b}aleq b.[1]



f:[a,b]↦C square integrable on [a,b]⟺ab|f(x)|2dx<∞{displaystyle f:[a,b]mapsto mathbb {C} {text{ square integrable on }}[a,b]quad iff quad int _{a}^{b}|f(x)|^{2},mathrm {d} x<infty }{displaystyle f:[a,b]mapsto mathbb {C} {text{ square integrable on }}[a,b]quad iff quad int _{a}^{b}|f(x)|^{2},mathrm {d} x<infty }



An equivalent definition is to say that the square of the function itself (rather than of its absolute value) is Lebesgue integrable. For this to be true, the integrals of the positive and negative portions of the real part must both be finite, as well as those for the imaginary part. The vector space of square integrable functions (with respect to Lebesque measure) form the Lp -space with p=2{displaystyle p=2}p=2.


Often the term is used not to refer to a specific function, but to a set of functions that are equal almost everywhere.



Properties


The square integrable functions (in the sense mentioned in which a "function" actually means an equivalence class of functions that are equal almost everywhere) form an inner product space with inner product given by


f,g⟩=∫Af(x)¯g(x)dx{displaystyle langle f,grangle =int _{A}{overline {f(x)}}g(x),mathrm {d} x}{displaystyle langle f,grangle =int _{A}{overline {f(x)}}g(x),mathrm {d} x}

where




  • f{displaystyle f}f and g{displaystyle g}g are square integrable functions,


  • f(x)¯{displaystyle {overline {f(x)}}}overline {f(x)} is the complex conjugate of f(x){displaystyle f(x)}f(x),


  • A{displaystyle A}A is the set over which one integrates—in the first definition (given in the introduction above), A{displaystyle A}A is (−,+∞){displaystyle (-infty ,+infty )}(-infty ,+infty ); in the second, A{displaystyle A}A is [a,b]{displaystyle [a,b]}[a,b].


Since a2=a⋅|a¯|{displaystyle a^{2}=acdot |{overline {a}}|}{displaystyle a^{2}=acdot |{overline {a}}|}, square integrability is the same as saying


f,f⟩<∞.{displaystyle langle f,frangle <infty .,}langle f,frangle <infty .,

It can be shown that square integrable functions form a complete metric space under the metric induced by the inner product defined above.
A complete metric space is also called a Cauchy space, because sequences in such metric spaces converge if and only if they are Cauchy.
A space which is complete under the metric induced by a norm is a Banach space.
Therefore, the space of square integrable functions is a Banach space, under the metric induced by the norm, which in turn is induced by the inner product.
As we have the additional property of the inner product, this is specifically a Hilbert space, because the space is complete under the metric induced by the inner product.


This inner product space is conventionally denoted by (L2,⟨,⋅2){displaystyle left(L_{2},langle cdot ,cdot rangle _{2}right)}left(L_{2},langle cdot ,cdot rangle _{2}right) and many times abbreviated as L2{displaystyle L_{2}}L_{2}.
Note that L2{displaystyle L_{2}}L_{2} denotes the set of square integrable functions, but no selection of metric, norm or inner product are specified by this notation.
The set, together with the specific inner product ,⋅2{displaystyle langle cdot ,cdot rangle _{2}}langle cdot ,cdot rangle _{2} specify the inner product space.


The space of square integrable functions is the Lp space in which p=2{displaystyle p=2}p=2.



See also



  • Lp space


References





  1. ^ G.Sansone (1991). Orthogonal Functions. Dover Publications. pp. 1–2. ISBN 978-0-486-66730-0..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}









這個網誌中的熱門文章

Hercules Kyvelos

Tangent Lines Diagram Along Smooth Curve

Yusuf al-Mu'taman ibn Hud